LeNet卷积神经网络

文章目录

简介

它是最早发布的卷积神经网络之一

conv2d

这个卷积成的参数先进行介绍一下:

python 复制代码
self.conv1 = nn.Conv2d(in_channels=3, out_channels=10, kernel_size=3, stride=1, padding=1)

先看一下in_channels 输入的通道数,out_channels输出通道数,然后彩色图片一般是3的通道数,kernel_size:是进行卷积的矩阵长和宽,stride 是走的步长, padding 是原图片当中填充的的长和宽,

他们的关系:其实这个in_channels,out_channels,就是你这一层需要的通道数,和自己输出的通道数,和 kernel_size, stride, padding 没有直接关系,而kernel_size, stride, padding 是修改的图片的高宽,是用来获取图片特征很有用的参数

网络层的结构

我们对原始模型做了一点小改动,去掉了最后一层的高斯激活。除此之外,这个网络与最初的LeNet-5一致。

python 复制代码
net = nn.Sequential(
    nn.Conv2d(1, 6, kernel_size=5, padding=2), nn.Sigmoid(),
    nn.AvgPool2d(kernel_size=2, stride=2),
    nn.Conv2d(6, 16, kernel_size=5), nn.Sigmoid(),
    nn.AvgPool2d(kernel_size=2, stride=2),
    nn.Flatten(),
    nn.Linear(16 * 5 * 5, 120), nn.Sigmoid(),
    nn.Linear(120, 84), nn.Sigmoid(),
    nn.Linear(84, 10))
相关推荐
小王爱学人工智能4 分钟前
快速了解迁移学习
人工智能·机器学习·迁移学习
非门由也18 分钟前
《sklearn机器学习——管道和复合估算器》可视化复合估计器
人工智能·机器学习·sklearn
THMAIL2 小时前
深度学习从入门到精通 - 迁移学习实战:用预训练模型解决小样本难题
人工智能·python·深度学习·算法·机器学习·迁移学习
.鱼子酱2 小时前
机器学习 - 使用 ID3 算法从原理到实际举例理解决策树
算法·决策树·机器学习
却道天凉_好个秋4 小时前
计算机视觉(十二):人工智能、机器学习与深度学习
人工智能·深度学习·机器学习·计算机视觉
虚拟现实旅人4 小时前
【机器学习】通过tensorflow搭建神经网络进行气温预测
神经网络·机器学习
@国境以南,太阳以西5 小时前
基于Grad-CAM(Gradient-weighted Class Activation Mapping)的可解释性分析
人工智能·深度学习
破烂儿5 小时前
基于机器学习的缓存准入策略研究
人工智能·机器学习·缓存
算法打盹中6 小时前
SimLingo:纯视觉框架下的自动驾驶视觉 - 语言 - 动作融合模型
人工智能·机器学习·计算机视觉·语言模型·自动驾驶
l12345sy6 小时前
Day23_【机器学习—聚类算法—K-Means聚类 及评估指标SSE、SC、CH】
算法·机器学习·kmeans·聚类·sse·sc·ch