LeNet卷积神经网络

文章目录

简介

它是最早发布的卷积神经网络之一

conv2d

这个卷积成的参数先进行介绍一下:

python 复制代码
self.conv1 = nn.Conv2d(in_channels=3, out_channels=10, kernel_size=3, stride=1, padding=1)

先看一下in_channels 输入的通道数,out_channels输出通道数,然后彩色图片一般是3的通道数,kernel_size:是进行卷积的矩阵长和宽,stride 是走的步长, padding 是原图片当中填充的的长和宽,

他们的关系:其实这个in_channels,out_channels,就是你这一层需要的通道数,和自己输出的通道数,和 kernel_size, stride, padding 没有直接关系,而kernel_size, stride, padding 是修改的图片的高宽,是用来获取图片特征很有用的参数

网络层的结构

我们对原始模型做了一点小改动,去掉了最后一层的高斯激活。除此之外,这个网络与最初的LeNet-5一致。

python 复制代码
net = nn.Sequential(
    nn.Conv2d(1, 6, kernel_size=5, padding=2), nn.Sigmoid(),
    nn.AvgPool2d(kernel_size=2, stride=2),
    nn.Conv2d(6, 16, kernel_size=5), nn.Sigmoid(),
    nn.AvgPool2d(kernel_size=2, stride=2),
    nn.Flatten(),
    nn.Linear(16 * 5 * 5, 120), nn.Sigmoid(),
    nn.Linear(120, 84), nn.Sigmoid(),
    nn.Linear(84, 10))
相关推荐
冰西瓜6005 分钟前
从项目入手机器学习——(一)数据预处理(上)
人工智能·机器学习
汤姆yu15 分钟前
基于深度学习的火焰烟雾识别系统
人工智能·深度学习·目标跟踪
sunfove33 分钟前
空间几何的基石:直角、柱、球坐标系的原理与转换详解
人工智能·python·机器学习
知乎的哥廷根数学学派35 分钟前
基于多尺度特征提取和注意力自适应动态路由胶囊网络的工业轴承故障诊断算法(Pytorch)
开发语言·网络·人工智能·pytorch·python·算法·机器学习
Yuer202537 分钟前
低熵回答倾向:语言模型中的一种系统稳定态
人工智能·机器学习·语言模型·ai安全·edca os
郝学胜-神的一滴1 小时前
《机器学习》经典教材全景解读:周志华教授匠心之作的技术深探
数据结构·人工智能·python·程序人生·机器学习·sklearn
知乎的哥廷根数学学派1 小时前
基于物理约束与多源知识融合的浅基础极限承载力智能预测与工程决策优化(以模拟信号为例,Pytorch)
人工智能·pytorch·python·深度学习·神经网络·机器学习
yubo05091 小时前
【无标题】
人工智能·深度学习
CoovallyAIHub1 小时前
为AI装上“纠偏”思维链,开源框架Robust-R1显著提升多模态大模型抗退化能力
深度学习·算法·计算机视觉
向量引擎小橙1 小时前
智能体“组团”时代:通信协议标准化如何颠覆未来协作模式?
大数据·人工智能·深度学习·集成学习