LeNet卷积神经网络

文章目录

简介

它是最早发布的卷积神经网络之一

conv2d

这个卷积成的参数先进行介绍一下:

python 复制代码
self.conv1 = nn.Conv2d(in_channels=3, out_channels=10, kernel_size=3, stride=1, padding=1)

先看一下in_channels 输入的通道数,out_channels输出通道数,然后彩色图片一般是3的通道数,kernel_size:是进行卷积的矩阵长和宽,stride 是走的步长, padding 是原图片当中填充的的长和宽,

他们的关系:其实这个in_channels,out_channels,就是你这一层需要的通道数,和自己输出的通道数,和 kernel_size, stride, padding 没有直接关系,而kernel_size, stride, padding 是修改的图片的高宽,是用来获取图片特征很有用的参数

网络层的结构

我们对原始模型做了一点小改动,去掉了最后一层的高斯激活。除此之外,这个网络与最初的LeNet-5一致。

python 复制代码
net = nn.Sequential(
    nn.Conv2d(1, 6, kernel_size=5, padding=2), nn.Sigmoid(),
    nn.AvgPool2d(kernel_size=2, stride=2),
    nn.Conv2d(6, 16, kernel_size=5), nn.Sigmoid(),
    nn.AvgPool2d(kernel_size=2, stride=2),
    nn.Flatten(),
    nn.Linear(16 * 5 * 5, 120), nn.Sigmoid(),
    nn.Linear(120, 84), nn.Sigmoid(),
    nn.Linear(84, 10))
相关推荐
AI科技星8 分钟前
光速飞行器动力学方程的第一性原理推导、验证与范式革命
数据结构·人工智能·线性代数·算法·机器学习·概率论
cyyt25 分钟前
深度学习周报(1.05~1.11)
人工智能·深度学习
AI人工智能+31 分钟前
专利证书识别技术;通过计算机视觉与深度学习,实现了专利文档从纸质到结构化数据的智能转换
深度学习·ocr·专利证书识别
小鸡吃米…39 分钟前
机器学习 - 亲和传播算法
python·机器学习·亲和传播
没学上了41 分钟前
SLM-多头注意力机制
pytorch·python·深度学习
大模型最新论文速读44 分钟前
「英伟达改进 GRPO」解决多奖励场景优势坍缩问题
人工智能·深度学习·自然语言处理
机器学习之心1 小时前
Transformer-GRU、Transformer、CNN-GRU、GRU、CNN五模型分类预测Matlab实现
cnn·gru·transformer·cnn-gru·五模型分类预测
子午1 小时前
【2026原创】中草药识别系统实现~Python+深度学习+模型训练+人工智能
人工智能·python·深度学习
武子康1 小时前
大数据-210 如何在Scikit-Learn中实现逻辑回归及正则化详解(L1与L2)
大数据·后端·机器学习
人工小情绪1 小时前
深度学习模型部署形式
人工智能·深度学习