LeNet卷积神经网络

文章目录

简介

它是最早发布的卷积神经网络之一

conv2d

这个卷积成的参数先进行介绍一下:

python 复制代码
self.conv1 = nn.Conv2d(in_channels=3, out_channels=10, kernel_size=3, stride=1, padding=1)

先看一下in_channels 输入的通道数,out_channels输出通道数,然后彩色图片一般是3的通道数,kernel_size:是进行卷积的矩阵长和宽,stride 是走的步长, padding 是原图片当中填充的的长和宽,

他们的关系:其实这个in_channels,out_channels,就是你这一层需要的通道数,和自己输出的通道数,和 kernel_size, stride, padding 没有直接关系,而kernel_size, stride, padding 是修改的图片的高宽,是用来获取图片特征很有用的参数

网络层的结构

我们对原始模型做了一点小改动,去掉了最后一层的高斯激活。除此之外,这个网络与最初的LeNet-5一致。

python 复制代码
net = nn.Sequential(
    nn.Conv2d(1, 6, kernel_size=5, padding=2), nn.Sigmoid(),
    nn.AvgPool2d(kernel_size=2, stride=2),
    nn.Conv2d(6, 16, kernel_size=5), nn.Sigmoid(),
    nn.AvgPool2d(kernel_size=2, stride=2),
    nn.Flatten(),
    nn.Linear(16 * 5 * 5, 120), nn.Sigmoid(),
    nn.Linear(120, 84), nn.Sigmoid(),
    nn.Linear(84, 10))
相关推荐
Ryan老房1 天前
无人机航拍图像标注-从采集到训练全流程
yolo·目标检测·机器学习·计算机视觉·目标跟踪·无人机
koo3641 天前
pytorch深度学习笔记19
pytorch·笔记·深度学习
哥布林学者1 天前
吴恩达深度学习课程五:自然语言处理 第三周:序列模型与注意力机制(三)注意力机制
深度学习·ai
A先生的AI之旅1 天前
2026-1-30 LingBot-VA解读
人工智能·pytorch·python·深度学习·神经网络
Learn Beyond Limits1 天前
文献阅读:A Probabilistic U-Net for Segmentation of Ambiguous Images
论文阅读·人工智能·深度学习·算法·机器学习·计算机视觉·ai
下午写HelloWorld1 天前
一维卷积神经网络 (1D CNN)
人工智能·神经网络·cnn
自可乐1 天前
LangGraph从入门到精通:构建智能Agent的完整指南
人工智能·python·机器学习
下午写HelloWorld1 天前
差分隐私深度学习(DP-DL)简要理解
人工智能·深度学习
deephub1 天前
让 AI 智能体学会自我进化:Agent Lightning 实战入门
人工智能·深度学习·大语言模型·agent
Loo国昌1 天前
【垂类模型数据工程】第四阶段:高性能 Embedding 实战:从双编码器架构到 InfoNCE 损失函数详解
人工智能·后端·深度学习·自然语言处理·架构·transformer·embedding