LeNet卷积神经网络

文章目录

简介

它是最早发布的卷积神经网络之一

conv2d

这个卷积成的参数先进行介绍一下:

python 复制代码
self.conv1 = nn.Conv2d(in_channels=3, out_channels=10, kernel_size=3, stride=1, padding=1)

先看一下in_channels 输入的通道数,out_channels输出通道数,然后彩色图片一般是3的通道数,kernel_size:是进行卷积的矩阵长和宽,stride 是走的步长, padding 是原图片当中填充的的长和宽,

他们的关系:其实这个in_channels,out_channels,就是你这一层需要的通道数,和自己输出的通道数,和 kernel_size, stride, padding 没有直接关系,而kernel_size, stride, padding 是修改的图片的高宽,是用来获取图片特征很有用的参数

网络层的结构

我们对原始模型做了一点小改动,去掉了最后一层的高斯激活。除此之外,这个网络与最初的LeNet-5一致。

python 复制代码
net = nn.Sequential(
    nn.Conv2d(1, 6, kernel_size=5, padding=2), nn.Sigmoid(),
    nn.AvgPool2d(kernel_size=2, stride=2),
    nn.Conv2d(6, 16, kernel_size=5), nn.Sigmoid(),
    nn.AvgPool2d(kernel_size=2, stride=2),
    nn.Flatten(),
    nn.Linear(16 * 5 * 5, 120), nn.Sigmoid(),
    nn.Linear(120, 84), nn.Sigmoid(),
    nn.Linear(84, 10))
相关推荐
idkmn_19 分钟前
Daily AI 20250513 (集成学习及其与联邦学习的区别)
人工智能·神经网络·机器学习·集成学习
WenGyyyL1 小时前
研读论文——《用于3D工业异常检测的自监督特征自适应》
人工智能·python·深度学习·机器学习·计算机视觉·3d
Wnq100722 小时前
基于 NanoDet 的工厂巡检机器人目标识别系统研究与实现
人工智能·机器学习·计算机视觉·目标跟踪·机器人·巡检机器人
yzx9910132 小时前
使用SVM进行图像分类
机器学习·支持向量机·分类
kovlistudio2 小时前
机器学习第十讲:异常值检测 → 发现身高填3米的不合理数据
人工智能·机器学习
马拉AI2 小时前
解锁Nature发文小Tips:LSTM、CNN与Attention的创新融合之路
人工智能·cnn·lstm
Code_流苏2 小时前
《Python星球日记》 第71天:命名实体识别(NER)与关系抽取
python·深度学习·ner·预训练语言模型·关系抽取·统计机器学习·标注方式
kovlistudio3 小时前
机器学习第八讲:向量/矩阵 → 数据表格的数学表达,如Excel表格转数字阵列
机器学习·矩阵·excel
北京地铁1号线3 小时前
卷积神经网络(CNN)前向传播手撕
人工智能·pytorch·深度学习
乌恩大侠5 小时前
【东枫科技】使用LabVIEW进行深度学习开发
科技·深度学习·labview