PyTorch神经网络打印存储所有权重+激活值(运行时中间值)

很多时候嵌入式或者新硬件需要纯净的权重模型和激活值(运行时中间值),本文提供一种最简洁的方法。

假设已经有模型model和pt文件了,在当前目录下新建weights文件夹,运行这段代码,就可以得到模型的权重(文本形式和二进制形式)

python 复制代码
model.load_state_dict(state_dict)

global_index = 0
for name, param in model.named_parameters():
    print(name, param.size())
    print(param.data.numpy(),file=open(f"weights/{global_index}-{name}.txt", "w"))
    param.data.numpy().tofile(f"weights/{global_index}-{name}.bin")
    global_index += 1

对于二进制形式的文件,可以通过od -t f4 <binary file name> 查看其对应的浮点数值。f4表示fp32.

打印forward的中间值:(这么复杂是必要的)

python3 复制代码
global_index = 0
def hook_fn(module, input, output):
    global global_index
    module_name = str(module)
    module_name=module_name.replace(" ", "")
    module_name=module_name.replace("\n", "")
    # print(name)
    intermediate_outputs = {}
    # input is a tuple, output is a tensor
    for i, inp in enumerate(input):
        intermediate_outputs[f"{global_index}-{module_name}-input-{i}"] = inp
    intermediate_outputs[f"{global_index}-{module_name}-output"] = output
    module_name = module_name[0:200]  # make sure full path <= 255
    print(intermediate_outputs)
    print(f"Size input:",end=" ")
    if(type(input) == tuple):
        for i, inp in enumerate(input):
            if type(inp) == torch.Tensor:
                print(f"{i}-th Size: {inp.size()}", end=", ")
                inp.numpy().tofile(f"activations/{global_index}-{module_name}-input-{i}.bin")
            else:
                print(f"{i}-th : {inp}", end=", ")
    elif type(input) == torch.Tensor:
        print(f"Size: {input.size()}")
        input.numpy().tofile(f"activations/{global_index}-{module_name}-input.bin")
    print(f"Size output: {output.size()}")
    global_index += 1
    output.numpy().tofile(f"activations/{global_index}-{module_name}-output.bin")

def register_hooks(model):
    for name, layer in model.named_children():
        # print(name, layer) # dump all layers, > layers.txt
        # Register the hook to the current layer
        layer.register_forward_hook(hook_fn)
        # Recursively apply the same to all submodules
        register_hooks(layer)

register_hooks(model)

其中regster_hooks和以下等价(不需要recursive了)

python3 复制代码
def register_hooks(model):
    for name, layer in model.named_modules():
        # print(name, layer) # dump all layers
        layer.register_forward_hook(hook_fn)

其中nn.sequential作为一个整体,目前没办法拆开来看其内部的中间值。

相关推荐
搞笑的秀儿2 分钟前
信息新技术
大数据·人工智能·物联网·云计算·区块链
云天徽上6 分钟前
【PaddleOCR】OCR表格识别数据集介绍,包含PubTabNet、好未来表格识别、WTW中文场景表格等数据,持续更新中......
python·ocr·文字识别·表格识别·paddleocr·pp-ocrv5
阿里云大数据AI技术20 分钟前
OpenSearch 视频 RAG 实践
数据库·人工智能·llm
你怎么知道我是队长27 分钟前
python-input内置函数
开发语言·python
XMAIPC_Robot32 分钟前
基于ARM+FPGA的光栅尺精密位移加速度测试解决方案
arm开发·人工智能·fpga开发·自动化·边缘计算
加油吧zkf42 分钟前
YOLO目标检测数据集类别:分类与应用
人工智能·计算机视觉·目标跟踪
叹一曲当时只道是寻常43 分钟前
Python实现优雅的目录结构打印工具
python
是Dream呀1 小时前
基于连接感知的实时困倦分类图神经网络
神经网络·分类·数据挖掘
Blossom.1181 小时前
机器学习在智能制造业中的应用:质量检测与设备故障预测
人工智能·深度学习·神经网络·机器学习·机器人·tensorflow·sklearn
天天扭码1 小时前
AI时代,前端如何处理大模型返回的多模态数据?
前端·人工智能·面试