PyTorch神经网络打印存储所有权重+激活值(运行时中间值)

很多时候嵌入式或者新硬件需要纯净的权重模型和激活值(运行时中间值),本文提供一种最简洁的方法。

假设已经有模型model和pt文件了,在当前目录下新建weights文件夹,运行这段代码,就可以得到模型的权重(文本形式和二进制形式)

python 复制代码
model.load_state_dict(state_dict)

global_index = 0
for name, param in model.named_parameters():
    print(name, param.size())
    print(param.data.numpy(),file=open(f"weights/{global_index}-{name}.txt", "w"))
    param.data.numpy().tofile(f"weights/{global_index}-{name}.bin")
    global_index += 1

对于二进制形式的文件,可以通过od -t f4 <binary file name> 查看其对应的浮点数值。f4表示fp32.

打印forward的中间值:(这么复杂是必要的)

python3 复制代码
global_index = 0
def hook_fn(module, input, output):
    global global_index
    module_name = str(module)
    module_name=module_name.replace(" ", "")
    module_name=module_name.replace("\n", "")
    # print(name)
    intermediate_outputs = {}
    # input is a tuple, output is a tensor
    for i, inp in enumerate(input):
        intermediate_outputs[f"{global_index}-{module_name}-input-{i}"] = inp
    intermediate_outputs[f"{global_index}-{module_name}-output"] = output
    module_name = module_name[0:200]  # make sure full path <= 255
    print(intermediate_outputs)
    print(f"Size input:",end=" ")
    if(type(input) == tuple):
        for i, inp in enumerate(input):
            if type(inp) == torch.Tensor:
                print(f"{i}-th Size: {inp.size()}", end=", ")
                inp.numpy().tofile(f"activations/{global_index}-{module_name}-input-{i}.bin")
            else:
                print(f"{i}-th : {inp}", end=", ")
    elif type(input) == torch.Tensor:
        print(f"Size: {input.size()}")
        input.numpy().tofile(f"activations/{global_index}-{module_name}-input.bin")
    print(f"Size output: {output.size()}")
    global_index += 1
    output.numpy().tofile(f"activations/{global_index}-{module_name}-output.bin")

def register_hooks(model):
    for name, layer in model.named_children():
        # print(name, layer) # dump all layers, > layers.txt
        # Register the hook to the current layer
        layer.register_forward_hook(hook_fn)
        # Recursively apply the same to all submodules
        register_hooks(layer)

register_hooks(model)

其中regster_hooks和以下等价(不需要recursive了)

python3 复制代码
def register_hooks(model):
    for name, layer in model.named_modules():
        # print(name, layer) # dump all layers
        layer.register_forward_hook(hook_fn)

其中nn.sequential作为一个整体,目前没办法拆开来看其内部的中间值。

相关推荐
Mark_Aussie3 分钟前
Flask-SQLAlchemy使用小结
python·flask
程序员阿龙16 分钟前
【精选】计算机毕业设计Python Flask海口天气数据分析可视化系统 气象数据采集处理 天气趋势图表展示 数据可视化平台源码+论文+PPT+讲解
python·flask·课程设计·数据可视化系统·天气数据分析·海口气象数据·pandas 数据处理
红衣小蛇妖21 分钟前
神经网络-Day44
人工智能·深度学习·神经网络
ZHOU_WUYI21 分钟前
Flask与Celery 项目应用(shared_task使用)
后端·python·flask
忠于明白22 分钟前
Spring AI 核心工作流
人工智能·spring·大模型应用开发·spring ai·ai 应用商业化
且慢.58940 分钟前
Python_day47
python·深度学习·计算机视觉
佩奇的技术笔记1 小时前
Python入门手册:异常处理
python
大写-凌祁1 小时前
论文阅读:HySCDG生成式数据处理流程
论文阅读·人工智能·笔记·python·机器学习
柯南二号1 小时前
深入理解 Agent 与 LLM 的区别:从智能体到语言模型
人工智能·机器学习·llm·agent
珂朵莉MM1 小时前
2021 RoboCom 世界机器人开发者大赛-高职组(初赛)解题报告 | 珂学家
java·开发语言·人工智能·算法·职场和发展·机器人