【二分查找】Leetcode 74. 搜索二维矩阵【中等】

搜索二维矩阵

给你一个满足下述两条属性的 m x n 整数矩阵:

  • 每行中的整数从左到右按非严格递增顺序排列。
  • 每行的第一个整数大于前一行的最后一个整数。

给你一个整数 target ,如果 target 在矩阵中,返回 true ;否则,返回 false 。

示例 1:

输入 :matrix = [[1,3,5,7],[10,11,16,20],[23,30,34,60]], target = 3
输出:true

解题思路1

  • 1、从矩阵的右上角开始查找。
  • 2、如果当前元素等于目标值,则返回true。
  • 3、如果当前元素大于目标值,则说明目标值在当前元素的左侧列,列索引减1。
  • 4、如果当前元素小于目标值,则说明目标值在当前元素的下方行,行索引加1。
  • 5、重复步骤2-4,直到找到目标值或者超出矩阵边界。

Java实现1

java 复制代码
public class SearchMatrix {

    public boolean searchMatrix(int[][] matrix, int target) {
        if (matrix == null || matrix.length == 0 || matrix[0].length == 0) {
            return false;
        }

        int rows = matrix.length;
        int cols = matrix[0].length;
        int row = 0;
        int col = cols - 1;

        while (row < rows && col >= 0) {
            if (matrix[row][col] == target) {
                return true;
            } else if (matrix[row][col] > target) {
                col--;
            } else {
                row++;
            }
        }

        return false;
    }

    public static void main(String[] args) {
        SearchMatrix solution = new SearchMatrix();
        int[][] matrix = {{1,3,5,7},{10,11,16,20},{23,30,34,60}};
        int target = 34;
        System.out.println("Target exists: " + solution.searchMatrix(matrix, target)); // Output: true
    }
}

时间空间复杂度1

  • 时间复杂度:O(m + n),其中m为矩阵的行数,n为矩阵的列数。因为每次迭代都会将行索引或列索引移动一次,最多移动m + n次。

  • 空间复杂度:O(1)。

解题思路2

  • 1、首先对第一列进行二分查找,找到最后一个小于等于 target 的元素所在的行。
  • 2、在找到的行中进行二分查找,确定 target 是否在该行中。

Java实现2

java 复制代码
public class SearchMatrix {

    public boolean searchMatrix(int[][] matrix, int target) {
        int m = matrix.length;
        int n = matrix[0].length;

         二分查找第一列,找到最后一个小于等于 target 的元素所在的行
        int left = 0;
        int right = m - 1;
        while (left <= right) {
            int mid =  (left + right ) / 2;
            if (matrix[mid][0] == target) {
                return true;
            } else if (matrix[mid][0] < target) {
                left = mid + 1;
            } else {
                right = mid - 1;
            }
        }

        // 如果目标值不在矩阵的第一列,则在确定的行中继续进行二分查找
        if (right >= 0) {
            //确定搜索行数
            int row = right;
            left = 0;
            right = n - 1;
            while (left <= right) {
                int mid =  (left + right ) / 2;
                if (matrix[row][mid] == target) {
                    return true;
                } else if (matrix[row][mid] < target) {
                    left = mid + 1;
                } else {
                    right = mid - 1;
                }
            }
        }

        return false;
    }

    public static void main(String[] args) {
        SearchMatrix solution = new SearchMatrix();
        int[][] matrix = {{1,3,5,7},{10,11,16,20},{23,30,34,60}};
        int target = 34;
        System.out.println("Target exists: " + solution.searchMatrix(matrix, target)); // Output: true
    }
}

时间空间复杂度2

  • 时间复杂度为 O(log m + log n),其中 n 是矩阵的列数,m 是矩阵的行数。
  • 空间复杂度:O(1)。
相关推荐
JNU freshman15 分钟前
C. Robin Hood in Town思考与理解
算法
_x_w1 小时前
【17】数据结构之图及图的存储篇章
数据结构·python·算法·链表·排序算法·图论
anscos1 小时前
Actran声源识别方法连载(二):薄膜模态表面振动识别
人工智能·算法·仿真软件·actran
-优势在我1 小时前
LeetCode之两数之和
算法·leetcode
WaitWaitWait011 小时前
LeetCode每日一题4.17
算法·leetcode
小媛早点睡1 小时前
贪心算法day9(合并区间)
算法·贪心算法
DataFunTalk2 小时前
Foundation Agent:深度赋能AI4DATA
前端·后端·算法
不是AI2 小时前
【Java编程】【计算机视觉】一种简单的图片加/解密算法
java·算法·计算机视觉
明月看潮生2 小时前
青少年编程与数学 02-016 Python数据结构与算法 23课题、分布式算法
分布式·python·算法·青少年编程·编程与数学
冠位观测者2 小时前
【Leetcode 每日一题】2176. 统计数组中相等且可以被整除的数对
数据结构·算法·leetcode