回归与聚类——性能评估(二)

1分析

回归当中的数据大小不一致,是否会导致结果影响较大。所以需要做标准化处理。

  • 数据分割与标准化处理
  • 回归预测
  • 线性回归的算法效果评估

2回归性能评估

均方误差(Mean Squared Error)MSE)评价机制:

注:y^i为预测值,y-为真实值

  • sklearn.metrics.mean_squared_error(y_true, y_pred)
    • 均方误差回归损失
    • y_true:真实值
    • y_pred:预测值
    • return:浮点数结果

3代码

我们也可以尝试去修改学习率

c 复制代码
estimator =SGDRegressor(learning_rate='constant',eta0=0.001)

此时我们可以通过调参数,找到学习率效果更好的值。

4正规方程和梯度下降对比

  • 文字对比
梯度下降 正规方程
需要选择学习率 不需要
需要迭代求解 一次运算得出
特征数量较大可以使用 需要计算方程,时间复杂度高O(n3)
  • 选择:
    • 小规模数据:
      • LinearRegression(不能解决拟合问题)
      • 岭回归
    • 大规模数据:SGDRegressor

拓展-关于优化方法GD、SGD、SAG

1、GD 梯度下降,原始的梯度下降法需要计算所有样本的值才能够得出梯度,计算量大,所以后面才有会一系列的改进。

2、SGD随机梯度下降。它在一次迭代时只考虑一个训练样本。

  • SGD的优点是:
    • 高效
    • 容易实现
  • SGD的缺点是:
    • SGD需要许多超参数:比如正则项参数、选代数
    • SGD对于特征标准化是敏感的。

3、SAG随机平均梯度法,由于收敛的速度太慢,有人提出SAG等基于梯度下降的算法。

Scikit-learn:岭回归、逻辑回归等当中都会有SAG优化

相关推荐
sensen_kiss3 小时前
INT303 Big Data Analysis 大数据分析 Pt.11 模型选择和词向量(Word Embeddings)
大数据·数据挖掘·数据分析
laocooon5238578863 小时前
数据收集, 数据清洗,数据分析,然后可视化,都涉及哪些知识
数据挖掘·数据分析
民乐团扒谱机6 小时前
【微实验】数模美赛备赛MATLAB实战:一文速通各种“马尔可夫”(Markov Model)
开发语言·人工智能·笔记·matlab·数据挖掘·马尔科夫链·线性系统
yongui478347 小时前
MATLAB中回归模型常用误差指标(MSE、RMSE、MAPE等)的实现方法
android·matlab·回归
_爱明7 小时前
评估回归模型的指标与理解
人工智能·数据挖掘·回归
醉卧考场君莫笑8 小时前
数据分析常用方法:上
数据挖掘·数据分析
小王毕业啦8 小时前
2003-2023年 285个地级市邻接矩阵、经济地理矩阵等8个矩阵数据
大数据·人工智能·数据挖掘·数据分析·数据统计·社科数据·实证数据
2501_941803629 小时前
在奥斯陆智能水利场景中构建实时水资源调度与高并发水质数据分析平台的工程设计实践经验分享
数据挖掘·数据分析·云计算
一条破秋裤13 小时前
【文献-1/6】一种高效的非参数特征校准方法用于少样本植物病害分类
人工智能·分类·数据挖掘
kisshuan1239613 小时前
使用YOLO11-C3k2-VSSD模型实现脐橙病害智能检测与分类,从数据准备到模型训练的完整指南
人工智能·分类·数据挖掘