回归与聚类——性能评估(二)

1分析

回归当中的数据大小不一致,是否会导致结果影响较大。所以需要做标准化处理。

  • 数据分割与标准化处理
  • 回归预测
  • 线性回归的算法效果评估

2回归性能评估

均方误差(Mean Squared Error)MSE)评价机制:

注:y^i为预测值,y-为真实值

  • sklearn.metrics.mean_squared_error(y_true, y_pred)
    • 均方误差回归损失
    • y_true:真实值
    • y_pred:预测值
    • return:浮点数结果

3代码

我们也可以尝试去修改学习率

c 复制代码
estimator =SGDRegressor(learning_rate='constant',eta0=0.001)

此时我们可以通过调参数,找到学习率效果更好的值。

4正规方程和梯度下降对比

  • 文字对比
梯度下降 正规方程
需要选择学习率 不需要
需要迭代求解 一次运算得出
特征数量较大可以使用 需要计算方程,时间复杂度高O(n3)
  • 选择:
    • 小规模数据:
      • LinearRegression(不能解决拟合问题)
      • 岭回归
    • 大规模数据:SGDRegressor

拓展-关于优化方法GD、SGD、SAG

1、GD 梯度下降,原始的梯度下降法需要计算所有样本的值才能够得出梯度,计算量大,所以后面才有会一系列的改进。

2、SGD随机梯度下降。它在一次迭代时只考虑一个训练样本。

  • SGD的优点是:
    • 高效
    • 容易实现
  • SGD的缺点是:
    • SGD需要许多超参数:比如正则项参数、选代数
    • SGD对于特征标准化是敏感的。

3、SAG随机平均梯度法,由于收敛的速度太慢,有人提出SAG等基于梯度下降的算法。

Scikit-learn:岭回归、逻辑回归等当中都会有SAG优化

相关推荐
老欧学视觉5 小时前
0013机器学习聚类算法(无监督算法)
算法·机器学习·聚类
自然语12 小时前
数字生已经进化到一个分水岭面临选择?先实现“动态识别“还是先实现“特征信息归纳分类“,文中给出以给出答案,大家选哪个方向?
人工智能·分类·数据挖掘
RickyWasYoung13 小时前
【聚类算法】高维数据的聚类
算法·数据挖掘·聚类
我是哈哈hh1 天前
【Python数据分析】Numpy总结
开发语言·python·数据挖掘·数据分析·numpy·python数据分析
小飞象—木兮1 天前
【产品运营必备】数据分析实战宝典:从入门到精通,驱动业务增长(附相关材料下载)
大数据·数据挖掘·数据分析·产品运营
kong79069281 天前
大数据的特征和数据分析
大数据·数据挖掘·数据分析
weixin_457760001 天前
EIOU (Efficient IoU): 高效边界框回归损失的解析
人工智能·数据挖掘·回归
ytttr8731 天前
基于自适应分水岭和亲和传播聚类的彩色图像分割
人工智能·计算机视觉·聚类
sensen_kiss1 天前
INT303 Big Data Analysis 大数据分析 Pt.10 分析模型和混合模型
大数据·学习·机器学习·数据挖掘·数据分析
njsgcs2 天前
pyautocad 基于线段包围盒聚类
python·数据挖掘·聚类