回归与聚类——性能评估(二)

1分析

回归当中的数据大小不一致,是否会导致结果影响较大。所以需要做标准化处理。

  • 数据分割与标准化处理
  • 回归预测
  • 线性回归的算法效果评估

2回归性能评估

均方误差(Mean Squared Error)MSE)评价机制:

注:y^i为预测值,y-为真实值

  • sklearn.metrics.mean_squared_error(y_true, y_pred)
    • 均方误差回归损失
    • y_true:真实值
    • y_pred:预测值
    • return:浮点数结果

3代码

我们也可以尝试去修改学习率

c 复制代码
estimator =SGDRegressor(learning_rate='constant',eta0=0.001)

此时我们可以通过调参数,找到学习率效果更好的值。

4正规方程和梯度下降对比

  • 文字对比
梯度下降 正规方程
需要选择学习率 不需要
需要迭代求解 一次运算得出
特征数量较大可以使用 需要计算方程,时间复杂度高O(n3)
  • 选择:
    • 小规模数据:
      • LinearRegression(不能解决拟合问题)
      • 岭回归
    • 大规模数据:SGDRegressor

拓展-关于优化方法GD、SGD、SAG

1、GD 梯度下降,原始的梯度下降法需要计算所有样本的值才能够得出梯度,计算量大,所以后面才有会一系列的改进。

2、SGD随机梯度下降。它在一次迭代时只考虑一个训练样本。

  • SGD的优点是:
    • 高效
    • 容易实现
  • SGD的缺点是:
    • SGD需要许多超参数:比如正则项参数、选代数
    • SGD对于特征标准化是敏感的。

3、SAG随机平均梯度法,由于收敛的速度太慢,有人提出SAG等基于梯度下降的算法。

Scikit-learn:岭回归、逻辑回归等当中都会有SAG优化

相关推荐
白日做梦Q1 小时前
细粒度图像分类:从双线性CNN到TransFG的技术演进
分类·数据挖掘·cnn
醉舞经阁半卷书12 小时前
Python机器学习常用库快速精通
人工智能·python·深度学习·机器学习·数据挖掘·数据分析·scikit-learn
老徐电商数据笔记3 小时前
BI工具与数据分析平台:数据价值呈现的最后一公里
数据库·数据挖掘·数据分析·bi·bi选型思考
2501_936146047 小时前
【电子元件识别】基于YOLOv26的电阻器与电容器自动分类系统
yolo·分类·数据挖掘
追风少年ii9 小时前
Cellular neighborhoods in cancer
分类·数据挖掘·空间·单细胞·cn
byzh_rc13 小时前
[机器学习从入门到入土] 自回归滑动平均ARMA
人工智能·机器学习·回归
Faker66363aaa13 小时前
内窥镜下金属表面缺陷检测与分类:基于YOLOv26的高精度智能识别系统
yolo·分类·数据挖掘
2501_9460187014 小时前
2026版尼斯分类下商标分类45大类及分类表全解析与选类工具应用
大数据·分类·数据挖掘
ASD123asfadxv14 小时前
椰子品种智能识别与分类_YOLOv26模型详解_训练验证与应用
yolo·分类·数据挖掘
(; ̄ェ ̄)。15 小时前
机器学习入门(十四)CART回归树、决策树剪枝
决策树·机器学习·回归