回归与聚类——性能评估(二)

1分析

回归当中的数据大小不一致,是否会导致结果影响较大。所以需要做标准化处理。

  • 数据分割与标准化处理
  • 回归预测
  • 线性回归的算法效果评估

2回归性能评估

均方误差(Mean Squared Error)MSE)评价机制:

注:y^i为预测值,y-为真实值

  • sklearn.metrics.mean_squared_error(y_true, y_pred)
    • 均方误差回归损失
    • y_true:真实值
    • y_pred:预测值
    • return:浮点数结果

3代码

我们也可以尝试去修改学习率

c 复制代码
estimator =SGDRegressor(learning_rate='constant',eta0=0.001)

此时我们可以通过调参数,找到学习率效果更好的值。

4正规方程和梯度下降对比

  • 文字对比
梯度下降 正规方程
需要选择学习率 不需要
需要迭代求解 一次运算得出
特征数量较大可以使用 需要计算方程,时间复杂度高O(n3)
  • 选择:
    • 小规模数据:
      • LinearRegression(不能解决拟合问题)
      • 岭回归
    • 大规模数据:SGDRegressor

拓展-关于优化方法GD、SGD、SAG

1、GD 梯度下降,原始的梯度下降法需要计算所有样本的值才能够得出梯度,计算量大,所以后面才有会一系列的改进。

2、SGD随机梯度下降。它在一次迭代时只考虑一个训练样本。

  • SGD的优点是:
    • 高效
    • 容易实现
  • SGD的缺点是:
    • SGD需要许多超参数:比如正则项参数、选代数
    • SGD对于特征标准化是敏感的。

3、SAG随机平均梯度法,由于收敛的速度太慢,有人提出SAG等基于梯度下降的算法。

Scikit-learn:岭回归、逻辑回归等当中都会有SAG优化

相关推荐
lishaoan773 小时前
实验设计与分析(第6版,Montgomery著,傅珏生译) 第10章拟合回归模型10.9节思考题10.12 R语言解题
回归·r语言·线性回归·残差分析·实验设计与数据分析·回归显著性
qq_4369621810 小时前
奥威BI+AI数据分析:企业数智化转型的加速器
人工智能·数据挖掘·数据分析
LeeZhao@14 小时前
【AGI】Qwen3混合推理模型微调数据集
人工智能·数据挖掘·aigc·agi
audyxiao00115 小时前
数据挖掘顶刊《IEEE Transactions on Knowledge and Data Engineering》2025年5月研究热点都有些什么?
大数据·人工智能·数据挖掘·大模型·图技术·智能体·时序动态建模
Reuuse15 小时前
《数据挖掘》- 房价数据分析
人工智能·数据挖掘·数据分析
liuweidong080216 小时前
【Pandas】pandas DataFrame rename
python·数据挖掘·pandas
白熊1881 天前
【机器学习基础】机器学习入门核心算法:层次聚类算法(AGNES算法和 DIANA算法)
算法·机器学习·聚类
扫地僧9852 天前
基于回归算法的心理健康预测(EDA + 预测)
人工智能·数据挖掘·回归
机器学习之心HML2 天前
聚类分析 | MATLAB实现基于SOM自组织特征映射聚类可视化
开发语言·matlab·聚类
xsddys2 天前
西瓜书第十章——聚类
机器学习·数据挖掘·聚类