回归与聚类——性能评估(二)

1分析

回归当中的数据大小不一致,是否会导致结果影响较大。所以需要做标准化处理。

  • 数据分割与标准化处理
  • 回归预测
  • 线性回归的算法效果评估

2回归性能评估

均方误差(Mean Squared Error)MSE)评价机制:

注:y^i为预测值,y-为真实值

  • sklearn.metrics.mean_squared_error(y_true, y_pred)
    • 均方误差回归损失
    • y_true:真实值
    • y_pred:预测值
    • return:浮点数结果

3代码

我们也可以尝试去修改学习率

c 复制代码
estimator =SGDRegressor(learning_rate='constant',eta0=0.001)

此时我们可以通过调参数,找到学习率效果更好的值。

4正规方程和梯度下降对比

  • 文字对比
梯度下降 正规方程
需要选择学习率 不需要
需要迭代求解 一次运算得出
特征数量较大可以使用 需要计算方程,时间复杂度高O(n3)
  • 选择:
    • 小规模数据:
      • LinearRegression(不能解决拟合问题)
      • 岭回归
    • 大规模数据:SGDRegressor

拓展-关于优化方法GD、SGD、SAG

1、GD 梯度下降,原始的梯度下降法需要计算所有样本的值才能够得出梯度,计算量大,所以后面才有会一系列的改进。

2、SGD随机梯度下降。它在一次迭代时只考虑一个训练样本。

  • SGD的优点是:
    • 高效
    • 容易实现
  • SGD的缺点是:
    • SGD需要许多超参数:比如正则项参数、选代数
    • SGD对于特征标准化是敏感的。

3、SAG随机平均梯度法,由于收敛的速度太慢,有人提出SAG等基于梯度下降的算法。

Scikit-learn:岭回归、逻辑回归等当中都会有SAG优化

相关推荐
deepdata_cn17 小时前
数据标签常见分类
数据挖掘·数据标签
Katecat9966318 小时前
YOLov10n-LDConv实现气瓶内部缺陷检测与分类全流程详解
yolo·分类·数据挖掘
Data-Miner19 小时前
本地化数据分析 agent,让 Excel 数据分析零门槛高效化
数据挖掘·数据分析·excel
愚公搬代码19 小时前
【愚公系列】《数据可视化分析与实践》010-数据分析(数据分析基础)
信息可视化·数据挖掘·数据分析
追风少年ii1 天前
顶刊分享(空间TCR)--单次溶瘤病毒治疗后T细胞持续活化并对胶质母细胞瘤产生细胞毒性:一项临床试验结果
分类·数据挖掘·空间·单细胞·cn
Clarence Liu1 天前
用大白话讲解人工智能(4) Softmax回归:AI如何给选项“打分排序“
人工智能·数据挖掘·回归
Flying pigs~~1 天前
Pandas绘图和Seaborn绘图
数据挖掘·数据分析·pandas·seaborn·python可视化
追风少年ii1 天前
文献分享--口腔黏膜免疫受独特的空间结构调控
大数据·数据挖掘·数据分析·空间·单细胞
AI前沿晓猛哥2 天前
告别C盘红条!安全清理QQ安装目录的深度教程与工具评测
数据挖掘
Faker66363aaa2 天前
如何使用RetinaNet进行中式菜品识别分类训练使用菜谱数据集炒菜,炖汤,蒸鱼,凉拌,烧烤,煎炸
人工智能·分类·数据挖掘