回归与聚类——性能评估(二)

1分析

回归当中的数据大小不一致,是否会导致结果影响较大。所以需要做标准化处理。

  • 数据分割与标准化处理
  • 回归预测
  • 线性回归的算法效果评估

2回归性能评估

均方误差(Mean Squared Error)MSE)评价机制:

注:y^i为预测值,y-为真实值

  • sklearn.metrics.mean_squared_error(y_true, y_pred)
    • 均方误差回归损失
    • y_true:真实值
    • y_pred:预测值
    • return:浮点数结果

3代码

我们也可以尝试去修改学习率

c 复制代码
estimator =SGDRegressor(learning_rate='constant',eta0=0.001)

此时我们可以通过调参数,找到学习率效果更好的值。

4正规方程和梯度下降对比

  • 文字对比
梯度下降 正规方程
需要选择学习率 不需要
需要迭代求解 一次运算得出
特征数量较大可以使用 需要计算方程,时间复杂度高O(n3)
  • 选择:
    • 小规模数据:
      • LinearRegression(不能解决拟合问题)
      • 岭回归
    • 大规模数据:SGDRegressor

拓展-关于优化方法GD、SGD、SAG

1、GD 梯度下降,原始的梯度下降法需要计算所有样本的值才能够得出梯度,计算量大,所以后面才有会一系列的改进。

2、SGD随机梯度下降。它在一次迭代时只考虑一个训练样本。

  • SGD的优点是:
    • 高效
    • 容易实现
  • SGD的缺点是:
    • SGD需要许多超参数:比如正则项参数、选代数
    • SGD对于特征标准化是敏感的。

3、SAG随机平均梯度法,由于收敛的速度太慢,有人提出SAG等基于梯度下降的算法。

Scikit-learn:岭回归、逻辑回归等当中都会有SAG优化

相关推荐
人工智能培训1 小时前
10分钟了解向量数据库(4)
人工智能·机器学习·数据挖掘·深度学习入门·深度学习证书·ai培训证书·ai工程师证书
做科研的周师兄3 小时前
【MATLAB 实战】栅格数据 K-Means 聚类(分块处理版)—— 解决大数据内存溢出、运行卡顿问题
人工智能·算法·机器学习·matlab·kmeans·聚类
Lun3866buzha4 小时前
手机类型识别与分类_功能手机_折叠手机_滑盖手机_智能手机检测方法
智能手机·分类·数据挖掘
Lun3866buzha4 小时前
轮胎胎面花纹识别与分类:基于solo_r50_fpn模型的实现与优化
人工智能·分类·数据挖掘
Lun3866buzha5 小时前
基于FCOS和HRNet的易拉罐缺陷检测与分类系统:实现工业质检自动化,提升检测精度与效率_1
分类·数据挖掘·自动化
沐墨染6 小时前
敏感词智能检索前端组件设计:树形组织过滤与多维数据分析
前端·javascript·vue.js·ui·数据挖掘·数据分析
YangYang9YangYan6 小时前
2026大专计算机专业学数据分析的实用性与前景分析
数据挖掘·数据分析
海天一色y6 小时前
基于Resnet50预训练模型实现CIFAR-10数据集的分类任务
人工智能·分类·数据挖掘
小鸡吃米…15 小时前
机器学习 - K - 中心聚类
人工智能·机器学习·聚类
Carl_奕然16 小时前
【数据挖掘】数据挖掘必会技能之:A/B测试
人工智能·python·数据挖掘·数据分析