回归与聚类——性能评估(二)

1分析

回归当中的数据大小不一致,是否会导致结果影响较大。所以需要做标准化处理。

  • 数据分割与标准化处理
  • 回归预测
  • 线性回归的算法效果评估

2回归性能评估

均方误差(Mean Squared Error)MSE)评价机制:

注:y^i为预测值,y-为真实值

  • sklearn.metrics.mean_squared_error(y_true, y_pred)
    • 均方误差回归损失
    • y_true:真实值
    • y_pred:预测值
    • return:浮点数结果

3代码

我们也可以尝试去修改学习率

c 复制代码
estimator =SGDRegressor(learning_rate='constant',eta0=0.001)

此时我们可以通过调参数,找到学习率效果更好的值。

4正规方程和梯度下降对比

  • 文字对比
梯度下降 正规方程
需要选择学习率 不需要
需要迭代求解 一次运算得出
特征数量较大可以使用 需要计算方程,时间复杂度高O(n3)
  • 选择:
    • 小规模数据:
      • LinearRegression(不能解决拟合问题)
      • 岭回归
    • 大规模数据:SGDRegressor

拓展-关于优化方法GD、SGD、SAG

1、GD 梯度下降,原始的梯度下降法需要计算所有样本的值才能够得出梯度,计算量大,所以后面才有会一系列的改进。

2、SGD随机梯度下降。它在一次迭代时只考虑一个训练样本。

  • SGD的优点是:
    • 高效
    • 容易实现
  • SGD的缺点是:
    • SGD需要许多超参数:比如正则项参数、选代数
    • SGD对于特征标准化是敏感的。

3、SAG随机平均梯度法,由于收敛的速度太慢,有人提出SAG等基于梯度下降的算法。

Scikit-learn:岭回归、逻辑回归等当中都会有SAG优化

相关推荐
龙腾AI白云1 小时前
国内外具身智能VLA模型深度解析(3)
深度学习·数据挖掘
xuehaikj2 小时前
文档类型识别与分类_yolo13-C3k2-SFSConv实现详解
人工智能·数据挖掘
蒋星熠8 小时前
实证分析:数据驱动决策的技术实践指南
大数据·python·数据挖掘·数据分析·需求分析
谅望者13 小时前
数据分析笔记14:Python文件操作
大数据·数据库·笔记·python·数据挖掘·数据分析
思通数科人工智能大模型13 小时前
零售场景下的数智店商:解决盗损问题,化解隐性成本痛点
人工智能·目标检测·计算机视觉·数据挖掘·知识图谱·零售
谅望者1 天前
数据分析笔记10:数据容器
笔记·数据挖掘·数据分析
谅望者1 天前
数据分析笔记05:区间估计
笔记·数据挖掘·数据分析
权泽谦1 天前
Java 在机器学习中的应用:基于 DL4J 与 Weka 的完整实战案例
java·机器学习·数据挖掘
权泽谦1 天前
脑肿瘤分割与分类的人工智能研究报告
人工智能·分类·数据挖掘
xuehaikj1 天前
【甲状腺病理AI】基于YOLO11-SOEP的甲状腺乳头状癌病理特征识别与分类系统研究
人工智能·分类·数据挖掘