python目标检测结果图像素转换(二值图和灰度图)

昨天在复现模型的时候发现test的结果图都是黑色的,输出像素发现白色是1,需要将白的像素乘以255,然后再输出,自己写的脚本如下(为了加快速度,用gpu转换,但是感觉速度还是一般)

python 复制代码
import os

from PIL import Image
import torch
import torchvision.transforms as transforms

device=torch.device("cuda" if torch.cuda.is_available() else "cpu")
def process_images_in_folder(input_folder, output_folder):
    # 确保输出文件夹存在,如果不存在则创建
    if not os.path.exists(output_folder):
        os.makedirs(output_folder)
    image_files= [f for f in os.listdir(input_folder) if os.path.isfile(os.path.join(input_folder, f)) and any(f.endswith(extension) for extension in ['.jpg', '.jpeg', '.png', '.bmp'])]
    total_images = len(image_files)
    # 遍历输入文件夹中的所有文件
    for idx,filename in enumerate(image_files,1):
        # 拼接输入和输出文件的完整路径
        input_image_path = os.path.join(input_folder, filename)
        output_image_path = os.path.join(output_folder, filename)
        # 检查文件是否为图像文件
            # 对图像应用相同的处理逻辑
        modify_pixel(input_image_path, output_image_path)
        print(f'Processed {idx}/{total_images} images')
def modify_pixel(input_image_path,output_image_path ):

    img=Image.open(os.path.join(input_image_path))
    img_tensor=transforms.ToTensor()(img).unsqueeze(0).to(device)
    # 获取图像尺寸
    width, height = img.size

    # 循环遍历每个像素,并根据像素值做相应处理
    for x in range(width):
        for y in range(height):
            # 获取原始像素值
            r = img.getpixel((x, y))
            # 如果像素值为1,则将像素值设为255(白色)
            r=255*r
         # 将处理后的像素值设置到新图像中
            img.putpixel((x, y), (r))
    # 保存处理后的图像
    img.save(output_image_path)



# 调用函数处理图像
input_folder="/root/autodl-tmp/SINet-V2-main/res/SINet_V2/COD10K"
output_folder="/root/autodl-tmp/SINet-V2-main/res/SINet-V2-White/COD10K"
process_images_in_folder(input_folder,output_folder)

自己更改一下输入和输出的文件夹名称就可以,可以实时查看处理的进度。

相关推荐
云畅新视界11 分钟前
从 CODING 停服到极狐 GitLab “接棒”,软件研发工具市场风云再起
人工智能·gitlab
chao_78912 分钟前
二分查找篇——寻找旋转排序数组中的最小值【LeetCode】
python·线性代数·算法·leetcode·矩阵
一ge科研小菜鸡16 分钟前
人工智能驱动下的可再生能源气象预测:构建绿色能源时代的新大脑
人工智能·能源
高压锅_122027 分钟前
Cursor+Coze+微信小程序实战: AI春联生成器
人工智能·微信小程序·notepad++
XiaoQiong.Zhang28 分钟前
数据分析框架和方法
人工智能
金玉满堂@bj29 分钟前
PyCharm 中 Python 解释器的添加选项及作用
ide·python·pycharm
程序员三藏34 分钟前
如何使用Pytest进行测试?
自动化测试·软件测试·python·测试工具·职场和发展·测试用例·pytest
TY-202537 分钟前
三、神经网络——网络优化方法
人工智能·深度学习·神经网络
Jamence1 小时前
多模态大语言模型arxiv论文略读(156)
论文阅读·人工智能·语言模型·自然语言处理·论文笔记