python目标检测结果图像素转换(二值图和灰度图)

昨天在复现模型的时候发现test的结果图都是黑色的,输出像素发现白色是1,需要将白的像素乘以255,然后再输出,自己写的脚本如下(为了加快速度,用gpu转换,但是感觉速度还是一般)

python 复制代码
import os

from PIL import Image
import torch
import torchvision.transforms as transforms

device=torch.device("cuda" if torch.cuda.is_available() else "cpu")
def process_images_in_folder(input_folder, output_folder):
    # 确保输出文件夹存在,如果不存在则创建
    if not os.path.exists(output_folder):
        os.makedirs(output_folder)
    image_files= [f for f in os.listdir(input_folder) if os.path.isfile(os.path.join(input_folder, f)) and any(f.endswith(extension) for extension in ['.jpg', '.jpeg', '.png', '.bmp'])]
    total_images = len(image_files)
    # 遍历输入文件夹中的所有文件
    for idx,filename in enumerate(image_files,1):
        # 拼接输入和输出文件的完整路径
        input_image_path = os.path.join(input_folder, filename)
        output_image_path = os.path.join(output_folder, filename)
        # 检查文件是否为图像文件
            # 对图像应用相同的处理逻辑
        modify_pixel(input_image_path, output_image_path)
        print(f'Processed {idx}/{total_images} images')
def modify_pixel(input_image_path,output_image_path ):

    img=Image.open(os.path.join(input_image_path))
    img_tensor=transforms.ToTensor()(img).unsqueeze(0).to(device)
    # 获取图像尺寸
    width, height = img.size

    # 循环遍历每个像素,并根据像素值做相应处理
    for x in range(width):
        for y in range(height):
            # 获取原始像素值
            r = img.getpixel((x, y))
            # 如果像素值为1,则将像素值设为255(白色)
            r=255*r
         # 将处理后的像素值设置到新图像中
            img.putpixel((x, y), (r))
    # 保存处理后的图像
    img.save(output_image_path)



# 调用函数处理图像
input_folder="/root/autodl-tmp/SINet-V2-main/res/SINet_V2/COD10K"
output_folder="/root/autodl-tmp/SINet-V2-main/res/SINet-V2-White/COD10K"
process_images_in_folder(input_folder,output_folder)

自己更改一下输入和输出的文件夹名称就可以,可以实时查看处理的进度。

相关推荐
羽凌寒1 小时前
图像对比度调整(局域拉普拉斯滤波)
人工智能·计算机视觉
大模型铲屎官1 小时前
【Python-Day 14】玩转Python字典(上篇):从零开始学习创建、访问与操作
开发语言·人工智能·pytorch·python·深度学习·大模型·字典
yunvwugua__1 小时前
Python训练营打卡 Day27
开发语言·python
一点.点1 小时前
计算机视觉的简单介绍
人工智能·深度学习·计算机视觉
量子-Alex1 小时前
【目标检测】【Transformer】Swin Transformer
人工智能·目标检测·transformer
GISer_Jing1 小时前
AI知识梳理——RAG、Agent、ReAct、LangChain、LangGraph、MCP、Function Calling、JSON-RPC
人工智能
Stara05112 小时前
基于多头自注意力机制(MHSA)增强的YOLOv11主干网络—面向高精度目标检测的结构创新与性能优化
人工智能·python·深度学习·神经网络·目标检测·计算机视觉·yolov11
YuSun_WK2 小时前
目标跟踪相关综述文章
人工智能·计算机视觉·目标跟踪
一切皆有可能!!2 小时前
RAG数据处理:PDF/HTML
人工智能·语言模型
kyle~2 小时前
深度学习---知识蒸馏(Knowledge Distillation, KD)
人工智能·深度学习