在做题中学习(62):矩阵区域和

1314. 矩阵区域和 - 力扣(LeetCode)

解法:二维前缀和

思路:读题画图才能理解意思:dun点点的是mat中的一个数,而要求的answer同位置的数 = 以点为中心上下左右延长 k 个单位所围成长方形的和。

因为最后answer中的每一个数都是mat一部分区域的和,所以就想到了二维前缀和模板:

在做题中学习(56):二维前缀和模板-CSDN博客

而对于右边图的情况:显然是无法取到边界以外的值的,所以需要处理边界情况:

细节

1.与二维前缀和模板不同的是,这题的mat下标是从0开始的,所以前缀和数组dp需要+1行1列

就是:填dp[1][1]时,公式的mat值是mat[0][0]的。

填answer时,是用dp的值,而dp的值是从[1][1]才生效的。

2.dp+1行1列,所以遍历时从1开始,再多遍历一次。

3.填dp值时,公式中有关用到mat的值的下标要-1.

4. 填answer值时,可以在公式处每个下标+1,也可以直接在求x1,y1,x2,y2时+1.

cpp 复制代码
class Solution 
{
public:
    vector<vector<int>> matrixBlockSum(vector<vector<int>>& mat, int k) 
    {
        int m = mat.size(),n = mat[0].size();
        vector<vector<int>> dp(m+1,vector<int>(n+1));

        //dp多加一行,多加一列
        for(int i = 1;i<=m;i++)
        {
            for(int j = 1;j<=n;j++)
            {
                dp[i][j] = dp[i-1][j] + dp[i][j-1] + mat[i-1][j-1] - dp[i-1][j-1];
            }
        }
        //answer
        vector<vector<int>> answer(m,vector<int>(n));
        for(int i = 0;i<m;i++)
        {
            for(int j = 0;j<n;j++)
            {
                int x1,y1,x2,y2;
                x1 = max(0,i-k) + 1;
                y1 = max(0,j-k) + 1;
                x2 = min(m-1,i+k) + 1;
                y2 = min(n-1,j+k) + 1;
                answer[i][j] = dp[x2][y2] - dp[x1-1][y2] - dp[x2][y1-1] + dp[x1-1][y1-1]; 
            }
        }
        return answer;
    }
};
相关推荐
冰糖猕猴桃4 分钟前
【Python】进阶 - 数据结构与算法
开发语言·数据结构·python·算法·时间复杂度、空间复杂度·树、二叉树·堆、图
天水幼麟8 分钟前
python学习笔记(深度学习)
笔记·python·学习
lifallen17 分钟前
Paimon vs. HBase:全链路开销对比
java·大数据·数据结构·数据库·算法·flink·hbase
you45801 小时前
小程序学习笔记:使用 MobX 实现全局数据共享,实例创建、计算属性与 Actions 方法
笔记·学习·小程序
liujing102329291 小时前
Day04_刷题niuke20250703
java·开发语言·算法
Brookty1 小时前
【MySQL】JDBC编程
java·数据库·后端·学习·mysql·jdbc
DolphinDB1 小时前
如何在C++交易系统中集成高性能回测与模拟撮合
c++
DKPT1 小时前
Java设计模式之结构型模式(外观模式)介绍与说明
java·开发语言·笔记·学习·设计模式
筏.k2 小时前
C++ 网络编程(14) asio多线程模型IOThreadPool
网络·c++·架构
2401_881244402 小时前
Treap树
数据结构·算法