【Text2SQL 论文】T5-SR:使用 T5 生成中间表示来得到 SQL

论文:T5-SR: A Unified Seq-to-Seq Decoding Strategy for Semantic Parsing

⭐⭐⭐

北大 & 中科大,arXiv:2306.08368

文章目录

一、论文速读

本文设计了一个 NL 和 SQL 的中间表示 SSQL,然后使用 seq2seq 模型,输入 NL 和 table schema,输出 SSQL,然后再基于 SSQL 构建出 SQL。

论文提出了使用 seq2seq 来做 Text2SQL 的两个挑战:

  1. seq2seq 能否产生模式上正确的 SQL?论文发现,seq2seq 模型能够产生合法的 SQL skeleton,但细节上的 schematic info prediction 容易出错。因此,本文引入 SSQL 作为 seq2seq 的中间表示,SSQL 目标是保留 NL 的语义信息,但去除掉 user query 没有表达的 database-schema-related 信息。
  2. seq2seq 能否产生语义一致的 SQL?论文指出,由于 seq2seq 的单向解码的机制,产生整个语义一致的 sequences 是难以保证的,QA 场景也许有较大容错性,但这在生成 SQL 上会产生灾难性失败。此外,论文发现 seq2seq 模型在使用 beam search 时是能够预测出正确的 SQL,但可能会给他们较低的 scores。为此,这里引入一个 score re-estimator 来重排所有 candidate predictions

二、中间表示:SSQL

Semantic-SQL(SSQL)的设计目标是去除掉标准 SQL 表达式中不必要的 schema-related 信息。主要基于原来的 SQL 语法做了如下改动:

  • 通过消除掉 JOIN 子句来简化 FROM 语句。SSQL 只预测出需要哪些表,但不需要指明如何 JOIN 起来,后序会使用 Steiner Tree Algorithm 来将使用的 tables JOIN 起来,从而生成 SQL。
  • 将 TABLE 和 COLUMN 结合为一个 string。标准 SQL 是 column 名和 table 名分开的,这里将输入的 schema 中将 TABLE 和 COLUMN 连接在一起,那输出中也就自然在一起了。

下面是一个 SSQL 的示例以及 JOIN 子句的预测:

三、Score Re-estimator

由于 seq2seq 在使用 beam search 时,可能会给 correct prediction 赋予较低的 scores,因此这里引入额外的 score re-estimator 来重新排序所有的 candidate predictions。score re-estimator 就是根据 candidate SQL 和 NL query 之间的语义一致性来计算一个得分。

score re-estimator 的实现图示如下:

它通过 [CLS] 得到一个分数,并将其与 seq2seq score 进行加权组合来得到最终的 score:

seq2seq score 是在生成 token 时,根据 seq2seq 生成 token 的概率值来计算得到的,这个 score 可以看作是生成该序列的 log-likelihood,即模型认为这个序列是正确输出的相对可能性。在 beam-search 策略中,会选择概率最高的序列作为最终生成的序列。

训练 score re-estimator 的方法,就是期待它能给正确的 NL-SQL pair 以更高的概率分,在做监督训练时,论文还采用了一个 trick:使用 soft logits 作为监督信号,原论文解释如下:

这样能更加对 beam search 中排名最高的候选者保持怀疑的态度。

四、总结

本文模型是通过引入中间表示并使用 seq2seq(T5)来解决 Text2SQL 任务,同时论文中也指出了使用 seq2seq 在 Text2SQL 任务下的难点。

该工作还引入了 SSQL 这样的中间表示,它比 SemQL、RAT-SQL IR 等中间表示要简单不少。

相关推荐
king王一帅1 小时前
Incremark Solid 版本上线:Vue/React/Svelte/Solid 四大框架,统一体验
前端·javascript·人工智能
泰迪智能科技3 小时前
分享|职业技术培训|数字技术应用工程师快问快答
人工智能
Dxy12393102165 小时前
如何给AI提问:让机器高效理解你的需求
人工智能
少林码僧5 小时前
2.31 机器学习神器项目实战:如何在真实项目中应用XGBoost等算法
人工智能·python·算法·机器学习·ai·数据挖掘
钱彬 (Qian Bin)5 小时前
项目实践15—全球证件智能识别系统(切换为Qwen3-VL-8B-Instruct图文多模态大模型)
人工智能·算法·机器学习·多模态·全球证件识别
麦聪聊数据6 小时前
MySQL并发与锁:从“防止超卖”到排查“死锁”
数据库·sql·mysql
没学上了6 小时前
CNNMNIST
人工智能·深度学习
宝贝儿好6 小时前
【强化学习】第六章:无模型控制:在轨MC控制、在轨时序差分学习(Sarsa)、离轨学习(Q-learning)
人工智能·python·深度学习·学习·机器学习·机器人
智驱力人工智能6 小时前
守护流动的规则 基于视觉分析的穿越导流线区检测技术工程实践 交通路口导流区穿越实时预警技术 智慧交通部署指南
人工智能·opencv·安全·目标检测·计算机视觉·cnn·边缘计算
AI产品备案6 小时前
生成式人工智能大模型备案制度与发展要求
人工智能·深度学习·大模型备案·算法备案·大模型登记