随机森林分析:R语言轻松实现微生物组随机森林分析及重要变量的选择

数据和代码获取:请查看主页个人信息!!!

大家好!欢迎来到R语言数据分析视界。今天我来介绍微生物组执行随机森林分类分析的R语言操作方法。微生物组的随机森林分析可以用于研究微生物组的组成和功能与其他因素(如分组情况、疾病状态、环境因素等)之间的关联关系。

microeco包可以轻松实现随机森林分类分析,接下来我们来进行分析和可视化展示,首先载入本次绘图数据:

Step1:数据载入

复制代码
rm(list=ls())pacman::p_load(tidyverse,microeco,magrittr,data.table,aplot)# 载入数据feature_table <- fread('feature_table.csv') %>% column_to_rownames('ID')sample_table <- fread('sample_table.csv') %>% column_to_rownames('ID')tax_table <- fread('tax_table.csv') %>% column_to_rownames('ID')

Step2:创建microeco对象

复制代码
# 创建microtable对象dataset <- microtable$new(sample_table = sample_table,                          otu_table = feature_table,                           tax_table = tax_table)dataset

Step3:执行随机森林分类分析

复制代码
rf <- trans_diff$new(dataset = dataset,                      method = "rf",                      group = "Group",                      taxa_level = "Genus")rf

这里我们制定分类的变量为"Group",分类水平为"Genus"水平。

Step4:重要分类微生物可视化

复制代码
# plot the MeanDecreaseGini bar# group_order is designed to sort the groupsg1 <- rf$plot_diff_bar(use_number = 1:20,                        group_order = c("TW", "CW", "IW"))
# plot the abundance using same taxa in g1g2 <- rf$plot_diff_abund(group_order = c("TW", "CW", "IW"),                          select_taxa = rf$plot_diff_bar_taxa)
g1 %>%   insert_right(g2)

在随机森林中,MeanDecreaseGini表示每个特征对于模型的准确性的贡献程度。通过绘制柱状图,可以直观地展示每个特征的重要性排序,从而帮助识别哪些特征对于预测结果最为关键。同时绘制丰度图可以展示不同分类单位在微生物组中的相对丰度,从而帮助了解微生物组的组成特征。

Step5:差异分析

复制代码
t1 <- trans_diff$new(dataset = dataset,                      method = "anova",                      group = "Group",                      taxa_level = "Genus",                      filter_thres = 0.001)t1$plot_diff_abund(use_number = 1:10,                    add_sig = T,                    coord_flip = F)ggsave('pic1.png', width = 7, height = 5)

关键词"随机森林" 获得本期代码和数据。

相关推荐
CodeByV14 小时前
【算法题】模拟
算法
s090713615 小时前
FPGA加速:Harris角点检测全解析
图像处理·算法·fpga开发·角点检测
前端程序猿之路15 小时前
30天大模型学习之Day 2:Prompt 工程基础系统
大数据·人工智能·学习·算法·语言模型·prompt·ai编程
星火开发设计15 小时前
堆排序原理与C++实现详解
java·数据结构·c++·学习·算法·排序算法
2501_9418036215 小时前
在柏林智能城市照明场景中构建实时调控与高并发能耗数据分析平台的工程设计实践经验分享
算法
福楠15 小时前
C++ STL | list
c语言·开发语言·数据结构·c++·算法·list
努力学算法的蒟蒻15 小时前
day55(1.6)——leetcode面试经典150
算法·leetcode·面试
s砚山s15 小时前
代码随想录刷题——二叉树篇(十)
算法
2301_7644413315 小时前
基于HVNS算法和分类装载策略的仓储系统仿真平台
人工智能·算法·分类
AI科技星15 小时前
统一场论变化的引力场产生电磁场推导与物理诠释
服务器·人工智能·科技·线性代数·算法·重构·生活