随机森林分析:R语言轻松实现微生物组随机森林分析及重要变量的选择

数据和代码获取:请查看主页个人信息!!!

大家好!欢迎来到R语言数据分析视界。今天我来介绍微生物组执行随机森林分类分析的R语言操作方法。微生物组的随机森林分析可以用于研究微生物组的组成和功能与其他因素(如分组情况、疾病状态、环境因素等)之间的关联关系。

microeco包可以轻松实现随机森林分类分析,接下来我们来进行分析和可视化展示,首先载入本次绘图数据:

Step1:数据载入

复制代码
rm(list=ls())pacman::p_load(tidyverse,microeco,magrittr,data.table,aplot)# 载入数据feature_table <- fread('feature_table.csv') %>% column_to_rownames('ID')sample_table <- fread('sample_table.csv') %>% column_to_rownames('ID')tax_table <- fread('tax_table.csv') %>% column_to_rownames('ID')

Step2:创建microeco对象

复制代码
# 创建microtable对象dataset <- microtable$new(sample_table = sample_table,                          otu_table = feature_table,                           tax_table = tax_table)dataset

Step3:执行随机森林分类分析

复制代码
rf <- trans_diff$new(dataset = dataset,                      method = "rf",                      group = "Group",                      taxa_level = "Genus")rf

这里我们制定分类的变量为"Group",分类水平为"Genus"水平。

Step4:重要分类微生物可视化

复制代码
# plot the MeanDecreaseGini bar# group_order is designed to sort the groupsg1 <- rf$plot_diff_bar(use_number = 1:20,                        group_order = c("TW", "CW", "IW"))
# plot the abundance using same taxa in g1g2 <- rf$plot_diff_abund(group_order = c("TW", "CW", "IW"),                          select_taxa = rf$plot_diff_bar_taxa)
g1 %>%   insert_right(g2)

在随机森林中,MeanDecreaseGini表示每个特征对于模型的准确性的贡献程度。通过绘制柱状图,可以直观地展示每个特征的重要性排序,从而帮助识别哪些特征对于预测结果最为关键。同时绘制丰度图可以展示不同分类单位在微生物组中的相对丰度,从而帮助了解微生物组的组成特征。

Step5:差异分析

复制代码
t1 <- trans_diff$new(dataset = dataset,                      method = "anova",                      group = "Group",                      taxa_level = "Genus",                      filter_thres = 0.001)t1$plot_diff_abund(use_number = 1:10,                    add_sig = T,                    coord_flip = F)ggsave('pic1.png', width = 7, height = 5)

关键词"随机森林" 获得本期代码和数据。

相关推荐
黄昏ivi42 分钟前
电力系统最小惯性常数解析
算法
独家回忆3641 小时前
每日算法-250425
算法
烁3471 小时前
每日一题(小白)模拟娱乐篇33
java·开发语言·算法
Demons_kirit2 小时前
LeetCode 2799、2840题解
算法·leetcode·职场和发展
软行2 小时前
LeetCode 每日一题 2845. 统计趣味子数组的数目
数据结构·c++·算法·leetcode
永远在Debug的小殿下2 小时前
查找函数【C++】
数据结构·算法
我想进大厂2 小时前
图论---染色法(判断是否为二分图)
数据结构·c++·算法·深度优先·图论
油泼辣子多加2 小时前
【风控】稳定性指标PSI
人工智能·算法·金融
雾月553 小时前
LeetCode 1292 元素和小于等于阈值的正方形的最大边长
java·数据结构·算法·leetcode·职场和发展
知来者逆5 小时前
计算机视觉——速度与精度的完美结合的实时目标检测算法RF-DETR详解
图像处理·人工智能·深度学习·算法·目标检测·计算机视觉·rf-detr