随机森林分析:R语言轻松实现微生物组随机森林分析及重要变量的选择

数据和代码获取:请查看主页个人信息!!!

大家好!欢迎来到R语言数据分析视界。今天我来介绍微生物组执行随机森林分类分析的R语言操作方法。微生物组的随机森林分析可以用于研究微生物组的组成和功能与其他因素(如分组情况、疾病状态、环境因素等)之间的关联关系。

microeco包可以轻松实现随机森林分类分析,接下来我们来进行分析和可视化展示,首先载入本次绘图数据:

Step1:数据载入

复制代码
rm(list=ls())pacman::p_load(tidyverse,microeco,magrittr,data.table,aplot)# 载入数据feature_table <- fread('feature_table.csv') %>% column_to_rownames('ID')sample_table <- fread('sample_table.csv') %>% column_to_rownames('ID')tax_table <- fread('tax_table.csv') %>% column_to_rownames('ID')

Step2:创建microeco对象

复制代码
# 创建microtable对象dataset <- microtable$new(sample_table = sample_table,                          otu_table = feature_table,                           tax_table = tax_table)dataset

Step3:执行随机森林分类分析

复制代码
rf <- trans_diff$new(dataset = dataset,                      method = "rf",                      group = "Group",                      taxa_level = "Genus")rf

这里我们制定分类的变量为"Group",分类水平为"Genus"水平。

Step4:重要分类微生物可视化

复制代码
# plot the MeanDecreaseGini bar# group_order is designed to sort the groupsg1 <- rf$plot_diff_bar(use_number = 1:20,                        group_order = c("TW", "CW", "IW"))
# plot the abundance using same taxa in g1g2 <- rf$plot_diff_abund(group_order = c("TW", "CW", "IW"),                          select_taxa = rf$plot_diff_bar_taxa)
g1 %>%   insert_right(g2)

在随机森林中,MeanDecreaseGini表示每个特征对于模型的准确性的贡献程度。通过绘制柱状图,可以直观地展示每个特征的重要性排序,从而帮助识别哪些特征对于预测结果最为关键。同时绘制丰度图可以展示不同分类单位在微生物组中的相对丰度,从而帮助了解微生物组的组成特征。

Step5:差异分析

复制代码
t1 <- trans_diff$new(dataset = dataset,                      method = "anova",                      group = "Group",                      taxa_level = "Genus",                      filter_thres = 0.001)t1$plot_diff_abund(use_number = 1:10,                    add_sig = T,                    coord_flip = F)ggsave('pic1.png', width = 7, height = 5)

关键词"随机森林" 获得本期代码和数据。

相关推荐
乌萨奇也要立志学C++12 小时前
【洛谷】BFS 求解最短路:从马的遍历到迷宫问题的实战解析
算法·宽度优先
老鼠只爱大米12 小时前
LeetCode经典算法面试题 #46:全排列(回溯、交换、剪枝等五种实现方案详细解析)
算法·leetcode·剪枝·回溯·全排列·stj算法
Dovis(誓平步青云)12 小时前
《滑动窗口算法:从 “暴力遍历” 到 “线性高效” 的思维跃迁》
运维·服务器·数据库·算法
_OP_CHEN13 小时前
【算法基础篇】(五十七)线性代数之矩阵乘法从入门到实战:手撕模板 + 真题详解
线性代数·算法·矩阵·蓝桥杯·c/c++·矩阵乘法·acm/icpc
天天爱吃肉821813 小时前
【跨界封神|周杰伦×王传福(陶晶莹主持):音乐创作与新能源NVH测试,底层逻辑竟完全同源!(新人必看入行指南)】
python·嵌入式硬件·算法·汽车
im_AMBER13 小时前
Leetcode 114 链表中的下一个更大节点 | 删除排序链表中的重复元素 II
算法·leetcode
xhbaitxl13 小时前
算法学习day38-动态规划
学习·算法·动态规划
多恩Stone13 小时前
【3D AICG 系列-6】OmniPart 训练流程梳理
人工智能·pytorch·算法·3d·aigc
历程里程碑13 小时前
普通数组----轮转数组
java·数据结构·c++·算法·spring·leetcode·eclipse
pp起床13 小时前
贪心算法 | part02
算法·leetcode·贪心算法