计算机毕业设计hadoop+spark+hive物流大数据分析平台 物流预测系统 物流信息爬虫 物流大数据 机器学习 深度学习 知识图谱 大数据

流程:
1.Python爬虫采集物流数据等存入mysql和.csv文件;
2.使用pandas+numpy或者MapReduce对上面的数据集进行数据清洗生成最终上传到hdfs;
3.使用hive数据仓库完成建库建表导入.csv数据集;
4.使用hive之hive_sql进行离线计算,使用spark之scala进行实时计算;
5.将计算指标使用sqoop工具导入mysql;
6.使用Flask+echarts进行可视化大屏实现、数据查询表格实现、含预测算法;

核心算法代码分享如下:

python 复制代码
from flask import Flask, render_template, request, redirect, url_for
import json
from flask_mysqldb import MySQL
from flask import Flask, send_from_directory,render_template, request, redirect, url_for, jsonify
import csv
import os
import pymysql
# 创建应用对象
app = Flask(__name__)
app.config['MYSQL_HOST'] = 'bigdata'
app.config['MYSQL_USER'] = 'root'
app.config['MYSQL_PASSWORD'] = '123456'
app.config['MYSQL_DB'] = 'hive_chinawutong'
mysql = MySQL(app)  # this is the instantiation


@app.route('/tables01')
def tables01():
    cur = mysql.connection.cursor()
    cur.execute('''SELECT replace(REPLACE(REPLACE(from_province, '区', ''), '省', ''),'市','') from_province,num FROM table01''')
    #row_headers = [x[0] for x in cur.description]  # this will extract row headers
    row_headers = ['from_province','num']  # this will extract row headers
    rv = cur.fetchall()
    json_data = []
    #print(json_data)
    for result in rv:
        json_data.append(dict(zip(row_headers, result)))
    return json.dumps(json_data, ensure_ascii=False)

@app.route('/tables02')
def tables02():
    cur = mysql.connection.cursor()
    cur.execute('''SELECT pub_time,num,LENGTH(pub_time) len_time FROM table02 ORDER BY len_time desc  ''')
    #row_headers = [x[0] for x in cur.description]  # this will extract row headers
    row_headers = ['pub_time','num']  # this will extract row headers
    rv = cur.fetchall()
    json_data = []
    #print(json_data)
    for result in rv:
        json_data.append(dict(zip(row_headers, result)))
    return json.dumps(json_data, ensure_ascii=False)

@app.route('/tables03')
def tables03():
    cur = mysql.connection.cursor()
    cur.execute('''SELECT * FROM table03 order by rztime asc''')
    #row_headers = [x[0] for x in cur.description]  # this will extract row headers
    row_headers = ['rztime','num']  # this will extract row headers
    rv = cur.fetchall()
    json_data = []
    #print(json_data)
    for result in rv:
        json_data.append(dict(zip(row_headers, result)))
    return json.dumps(json_data, ensure_ascii=False)

@app.route('/tables04')
def tables04():
    cur = mysql.connection.cursor()
    cur.execute('''SELECT * FROM table04''')
    #row_headers = [x[0] for x in cur.description]  # this will extract row headers
    row_headers = ['yslx','num']  # this will extract row headers
    rv = cur.fetchall()
    json_data = []
    #print(json_data)
    for result in rv:
        json_data.append(dict(zip(row_headers, result)))
    return json.dumps(json_data, ensure_ascii=False)

@app.route("/getmapcountryshowdata")
def getmapcountryshowdata():
    filepath = r"D:\\wuliu_hadoop_spark_spider2025\\echarts\\data\\maps\\china.json"
    with open(filepath, "r", encoding='utf-8') as f:
        data = json.load(f)
        return json.dumps(data, ensure_ascii=False)


@app.route('/tables05')
def tables05():
    cur = mysql.connection.cursor()
    cur.execute('''SELECT * FROM table05 order by num asc''')
    #row_headers = [x[0] for x in cur.description]  # this will extract row headers
    row_headers = ['hwlx','num']  # this will extract row headers
    rv = cur.fetchall()
    json_data = []
    #print(json_data)
    for result in rv:
        json_data.append(dict(zip(row_headers, result)))
    return json.dumps(json_data, ensure_ascii=False)

@app.route('/tables06')
def tables06():
    cur = mysql.connection.cursor()
    cur.execute('''SELECT * FROM table06''')
    #row_headers = [x[0] for x in cur.description]  # this will extract row headers
    row_headers = ['weight_union','num']  # this will extract row headers
    rv = cur.fetchall()
    json_data = []
    #print(json_data)
    for result in rv:
        json_data.append(dict(zip(row_headers, result)))
    return json.dumps(json_data, ensure_ascii=False)

@app.route('/tables07')
def tables07():
    cur = mysql.connection.cursor()
    cur.execute('''SELECT * FROM table07 order by  num asc''')
    #row_headers = [x[0] for x in cur.description]  # this will extract row headers
    row_headers = ['recieve_province','num']  # this will extract row headers
    rv = cur.fetchall()
    json_data = []
    #print(json_data)
    for result in rv:
        json_data.append(dict(zip(row_headers, result)))
    return json.dumps(json_data, ensure_ascii=False)

@app.route('/tables08')
def tables08():
    cur = mysql.connection.cursor()
    cur.execute('''SELECT * FROM table08''')
    #row_headers = [x[0] for x in cur.description]  # this will extract row headers
    row_headers = ['end_time','num']  # this will extract row headers
    rv = cur.fetchall()
    json_data = []
    #print(json_data)
    for result in rv:
        json_data.append(dict(zip(row_headers, result)))
    return json.dumps(json_data, ensure_ascii=False)

@app.route('/tables09')
def tables09():
    cur = mysql.connection.cursor()
    cur.execute('''SELECT * FROM table09''')
    #row_headers = [x[0] for x in cur.description]  # this will extract row headers
    row_headers = ['wlmc','num']  # this will extract row headers
    rv = cur.fetchall()
    json_data = []
    #print(json_data)
    for result in rv:
        json_data.append(dict(zip(row_headers, result)))
    return json.dumps(json_data, ensure_ascii=False)


@app.route('/data',methods=['GET'])
def data():
    limit = int(request.args['limit'])
    page = int(request.args['page'])
    page = (page-1)*limit
    conn = pymysql.connect(host='bigdata', user='root', password='123456', port=3306, db='hive_chinawutong',
                           charset='utf8mb4')

    cursor = conn.cursor()
    if (len(request.args) == 2):
        cursor.execute("select count(*) from ods_chinawutong");
        count = cursor.fetchall()
        cursor = conn.cursor(cursor=pymysql.cursors.DictCursor)
        cursor.execute("select * from ods_chinawutong limit "+str(page)+","+str(limit));
        data_dict = []
        result = cursor.fetchall()
        for field in result:
            data_dict.append(field)
    else:
        weight_union = str(request.args['weight_union'])
        wlmc = str(request.args['wlmc']).lower()
        if(weight_union=='不限'):
            cursor.execute("select count(*) from ods_chinawutong where wlmc like '%"+wlmc+"%'");
            count = cursor.fetchall()
            cursor = conn.cursor(cursor=pymysql.cursors.DictCursor)
            cursor.execute("select * from ods_chinawutong where wlmc like '%"+wlmc+"%' limit " + str(page) + "," + str(limit));
            data_dict = []
            result = cursor.fetchall()
            for field in result:
                data_dict.append(field)
        else:
            cursor.execute("select count(*) from ods_chinawutong where wlmc like '%"+wlmc+"%' and weight_union like '%"+weight_union+"%'");
            count = cursor.fetchall()
            cursor = conn.cursor(cursor=pymysql.cursors.DictCursor)
            cursor.execute("select * from ods_chinawutong where wlmc like '%"+wlmc+"%' and weight_union like '%"+weight_union+"%' limit " + str(page) + "," + str(limit));
            data_dict = []
            result = cursor.fetchall()
            for field in result:
                data_dict.append(field)
    table_result = {"code": 0, "msg": None, "count": count[0], "data": data_dict}
    cursor.close()
    conn.close()
    return jsonify(table_result)


if __name__ == "__main__":
    app.run(debug=False)
相关推荐
XWM_Web17 分钟前
JavaApi---第二节
java·开发语言·python·学习
Zaly.33 分钟前
【Python刷题】动态规划相关问题
开发语言·python·动态规划
只怕自己不够好36 分钟前
《全面解析图像平滑处理:多种滤波方法及应用实例》
图像处理·python·opencv
股票GPT分析44 分钟前
《Python 股票交易分析:开启智能投资新时代》(一)
服务器·开发语言·python·fastapi
Kika写代码1 小时前
【大数据技术基础】 课程 第8章 数据仓库Hive的安装和使用 大数据基础编程、实验和案例教程(第2版)
大数据·数据仓库·hive
天才奇男子1 小时前
Python爬虫爬取网页小说
开发语言·爬虫·python
努力更新中1 小时前
Python浪漫之画明亮的月亮
开发语言·python·动画
数据小爬虫@1 小时前
利用Python爬虫获取商品评论:技术与实践
开发语言·爬虫·python
叫我:松哥1 小时前
基于python flask的网页五子棋实现,包括多种语言,可以悔棋、重新开始
开发语言·python·算法·游戏·flask
zhixingheyi_tian1 小时前
Spark 之 SparkSessionExtensions
大数据·分布式·spark