卡方分布和 Zipf 分布模拟及 Seaborn 可视化教程

卡方分布

简介

卡方分布是一种连续概率分布,常用于统计学中进行假设检验。它描述了在独立抽样中,每个样本的平方偏差之和的分布。卡方分布的形状由其自由度 (df) 参数决定,自由度越大,分布越平缓。

参数

卡方分布用两个参数来定义:

df:自由度,表示卡方分布的形状。自由度必须为正整数。

size:输出数组的形状。

公式

卡方分布的概率密度函数 (PDF) 为:

python 复制代码
f(x) = (x^(df/2 - 1) * np.exp(-x/2)) / (2^(df/2) * Gamma(df/2))    for x >= 0

其中:

f(x):表示在 x 点的概率密度。
x:非负实数。
df:自由度。
np.exp(-x/2):指数函数。
Gamma(df/2):伽马函数。

生成卡方分布数据

NumPy 提供了 random.chisquare() 函数来生成服从卡方分布的随机数。该函数接受以下参数:

df:自由度。
size:输出数组的形状。

示例:生成 10 个自由度为 5 的卡方分布随机数:

python 复制代码
import numpy as np

data = np.random.chisquare(df=5, size=10)
print(data)

可视化卡方分布

Seaborn 库提供了便捷的函数来可视化分布,包括卡方分布。

示例:绘制 1000 个自由度为 5 的卡方分布随机数的分布图:

python 复制代码
import seaborn as sns
import numpy as np

data = np.random.chisquare(df=5, size=1000)
sns.distplot(data)
plt.show()

练习

  1. 模拟 20 个自由度为 10 的卡方分布随机数,并绘制它们的分布图。
  2. 比较不同自由度下卡方分布形状的变化。
  3. 利用卡方分布来进行卡方检验,假设某枚硬币是公平的,即正面朝上的概率为 0.5。抛掷硬币 100 次,并计算正面朝上的次数是否服从二项分布。

解决方案

python 复制代码
import seaborn as sns
import numpy as np
from scipy import stats

# 1. 模拟随机数并绘制分布图
data = np.random.chisquare(df=10, size=20)
sns.distplot(data)
plt.show()

# 2. 比较不同自由度下分布形状的变化
df_values = [2, 5, 10, 20]
for df in df_values:
    data = np.random.chisquare(df=df, size=1000)
    sns.distplot(data, label=f"df={df}")
plt.legend()
plt.show()

# 3. 进行卡方检验
heads = np.random.binomial(n=100, p=0.5)
chi2_stat, p_value = stats.chisquare(heads, f_exp=50)
print("卡方统计量:", chi2_stat)
print("p 值:", p_value)

# 由于 p 值大于 0.05,无法拒绝原假设,即可以认为硬币是公平的。

瑞利分布

简介

瑞利分布是一种连续概率分布,常用于描述信号处理和雷达系统中的幅度分布。它表示在一个随机变量的平方根服从指数分布时,该随机变量的分布。

参数

瑞利分布用一个参数来定义:

scale:尺度参数,控制分布的平坦程度。较大的尺度参数使分布更加平坦,两侧尾部更加分散。默认为 1。

公式

瑞利分布的概率密度函数 (PDF) 为:

python 复制代码
f(x) = (x scale) / (scale^2 np.exp(-x^2 / (2 scale^2)))    for x >= 0

其中:

f(x):表示在 x 点的概率密度。
x:非负实数。
scale:尺

Zipf分布

简介

Zipf分布,又称为Zeta分布,是一种离散概率分布,常用于描述自然语言、人口统计学、城市规模等领域中具有幂律特征的数据分布。它体现了"少数服从多数"的现象,即排名越靠前的元素出现的频率越高。

参数

Zipf分布用一个参数来定义:

a:分布参数,控制分布的形状。a越小,分布越偏向于少数元素,越接近幂律分布。默认为 2。

公式

Zipf分布的概率质量函数 (PMF) 为:

python 复制代码
P(k) = 1 / (k ^ a)    for k >= 1

其中:

P(k):表示第 k 个元素出现的概率。
k:元素的排名,从 1 开始。
a:分布参数。

生成Zipf分布数据

NumPy提供了random.zipf()函数来生成服从Zipf分布的随机数。该函数接受以下参数:

a:分布参数。
size:输出数组的形状。

示例:生成10个服从Zipf分布的随机数,分布参数为2:

python 复制代码
import numpy as np

data = np.random.zipf(a=2, size=10)
print(data)

可视化Zipf分布

Seaborn库提供了便捷的函数来可视化分布,包括Zipf分布。

示例:绘制1000个服从Zipf分布的随机数的分布图,分布参数为2:

python 复制代码
import seaborn as sns
import numpy as np

data = np.random.zipf(a=2, size=1000)
sns.distplot(data)
plt.show()

练习

  1. 模拟不同分布参数下Zipf分布形状的变化。
  2. 利用Zipf分布来模拟一个城市的规模分布,并计算排名前10的城市人口占总人口的比例。
  3. 比较Zipf分布与幂律分布的异同。

解决方案

python 复制代码
import seaborn as sns
import numpy as np

# 1. 模拟不同分布参数下Zipf分布形状的变化
a_values = [1.5, 2, 2.5, 3]
for a in a_values:
    data = np.random.zipf(a=a, size=1000)
    sns.distplot(data, label=f"a={a}")
plt.legend()
plt.show()

2. 模拟城市规模分布并计算人口比例

population = np.random.zipf(a=2, size=100)

top10_population = population[:10].sum()

total_population = population.sum()

print("排名前10的城市人口:", top10_population)

print("排名前10的城市人口比例:", top10_population / total_population)

3. Zipf分布与幂律分布的比较

Zipf分布和幂律分布都描述了"少数服从多数"的现象,即排名越靠前的元素出现的频率越高。

但是,Zipf分布的参数化程度更高,可以更精确地描述不同领域的幂律现象。幂律分布则更通用,但缺乏Zipf分布对参数的控制能力。

具体来说,Zipf分布的PMF为:

python 复制代码
P(k) = 1 / (k ^ a)

幂律分布的PMF为:

python 复制代码
P(k) = C / k ^ alpha

其中,C为归一化常数。

可见,Zipf分布的参数a控制了分布的倾斜程度,而幂律分布的参数alpha则控制了分布的整体形状。

此外,Zipf分布通常用于描述离散数据,而幂律分布则可以用于描述离散和连续数据。

最后

为了方便其他设备和平台的小伙伴观看往期文章:

微信公众号搜索:Let us Coding,关注后即可获取最新文章推送

看完如果觉得有帮助,欢迎点赞、收藏、关注

相关推荐
white.tie1 分钟前
linux配置nginx
linux·运维·nginx
虞书欣的63 分钟前
Python小游戏24——小恐龙躲避游戏
开发语言·python·游戏·小程序·pygame
Komorebi.py7 分钟前
【Linux】-学习笔记03
linux·笔记·学习
FHYAAAX10 分钟前
【机器学习】任务十:从函数分析到机器学习应用与BP神经网络
开发语言·python
PyAIGCMaster19 分钟前
python环境中,敏感数据的存储与读取问题解决方案
服务器·前端·python
nameofworld31 分钟前
前端面试笔试(二)
前端·javascript·面试·学习方法·数组去重
dessler38 分钟前
云计算&虚拟化-kvm创建网桥(bridge)
linux·运维·云计算
YRr YRr40 分钟前
Ubuntu20.04 解决一段时间后键盘卡死的问题 ubuntu
linux·数据库·ubuntu
何曾参静谧1 小时前
「Py」模块篇 之 PyAutoGUI库自动化图形用户界面库
运维·python·自动化
pumpkin845141 小时前
客户端发送http请求进行流量控制
python·网络协议·http