31、matlab卷积运算:卷积运算、二维卷积、N维卷积

1、conv 卷积和多项式乘法

语法

语法1:w = conv(u,v) 返回向量 u 和 v 的卷积。

语法2:w = conv(u,v,shape) 返回如 shape 指定的卷积的分段。

参数

u,v --- 输入向量 shape --- 卷积的分段 'full' (默认) | 'same' | 'valid'

'full':全卷积 'same':与u大小相同的卷积的中心部分'valid':计算没有补零边缘的卷积部分

2、通过卷积计算多项式乘法

代码及运算

Matlab 复制代码
u = [1 0 1 1];
v = [2 7 1];
w = conv(u,v)

w =

     2     7     3     9     8     1

3、 向量卷积

代码及运算

Matlab 复制代码
u = [1 1 1 1];
v = [1 1 1 1 0 0 0 1 1];
w = conv(u,v)

w =

  列 1 至 11

     1     2     3     4     3     2     1     1     2     2     2

  列 12

     1

4、 卷积的中心部分

'same'代码及运算

Matlab 复制代码
u = [-1 2 1 3 1 -2 0 1 2];
v = [2 4 -1 1 1];
w = conv(u,v,'same')

w =

    11     7    14     0    -5     8     7     5    -1

'full'代码及运算

Matlab 复制代码
u = [-1 2 1 3 1 -2 0 1 2];
v = [2 4 -1 1 1];
w = conv(u,v,'full')

w =

  列 1 至 11

    -2     0    11     7    14     0    -5     8     7     5    -1

  列 12 至 13

     3     2

'valid'代码及运算

Matlab 复制代码
u = [-1 2 1 3 1 -2 0 1 2];
v = [2 4 -1 1 1];
w = conv(u,v,'valid')

w =

    14     0    -5     8     7

5、 conv2 二维卷积

语法

语法1:C = conv2(A,B) 返回矩阵 A 和 B 的二维卷积。

语法2:C = conv2(u,v,A) 首先求 A 的各列与向量 u 的卷积,然后求每行结果与向量 v 的卷积。

语法3:C = conv2(___,shape) 根据 shape 返回卷积的子区。

1)二维卷积

代码及运算

Matlab 复制代码
A = rand(3);
B = rand(4);
Cfull = conv2(A,B)%6*6
Csame = conv2(A,B,'same')%中心部位

Cfull =

    0.0781    0.8435    1.6181    1.6544    1.5357    0.7213
    0.2367    1.2223    2.9144    3.6484    2.8119    1.0920
    0.5183    1.4313    3.4028    4.2039    3.0881    1.3723
    0.2844    2.0170    2.9532    3.0694    2.6967    0.9839
    0.4857    1.3186    1.8013    1.5967    1.3232    0.4820
    0.5008    0.1639    0.8645    0.2304    0.3948    0.0831


Csame =

    3.4028    4.2039    3.0881
    2.9532    3.0694    2.6967
    1.8013    1.5967    1.3232

2)例子:提取二维台座边

代码及运算

Matlab 复制代码
A = zeros(10);
A(3:7,3:7) = ones(5);
mesh(A)

视图效果

1) 计算水平边

代码及运算

Matlab 复制代码
u = [1 0 -1]';
v = [1 2 1];
Ch = conv2(u,v,A);
mesh(Ch)

视图效果

2)计算垂直边

代码及运算

Matlab 复制代码
Cv = conv2(v,u,A);
mesh(Cv)

视图效果

3) 绘制组合边长

6、convn N 维卷积

语法

语法1:C = convn(A,B) 返回数组 A 和 B 的 N 维卷积。

语法2:C = convn(A,B,shape) 根据 shape 返回卷积的子区。

1)三维卷积

代码及运算

Matlab 复制代码
A = rand(2,3,2);
B = 0.25*ones(2,2,2);
C = convn(A,B)

C(:,:,1) =

    0.1765    0.2457    0.0935    0.0243
    0.1845    0.2652    0.3109    0.2301
    0.0080    0.0195    0.2174    0.2059


C(:,:,2) =

    0.3502    0.6570    0.4408    0.1340
    0.4375    0.7644    0.7622    0.4352
    0.0872    0.1074    0.3214    0.3013


C(:,:,3) =

    0.1737    0.4113    0.3472    0.1097
    0.2530    0.4991    0.4512    0.2051
    0.0793    0.0879    0.1040    0.0954

代码及运算

Matlab 复制代码
A = rand(2,3,2);
B = 0.25*ones(2,2,2);
C = convn(A,B,'same')

C(:,:,1) =

    1.1643    0.8855    0.4774
    0.6798    0.4946    0.2022


C(:,:,2) =

    0.6049    0.4434    0.2044
    0.3586    0.2106    0.0407

代码及运算

Matlab 复制代码
 A = rand(2,3,2);
B = 0.25*ones(2,2,2);
C = convn(A,B,'full')

C(:,:,1) =

    0.0297    0.2697    0.3863    0.1463
    0.1543    0.4794    0.5273    0.2023
    0.1246    0.2097    0.1410    0.0560


C(:,:,2) =

    0.2176    0.5840    0.7355    0.3690
    0.4059    1.0322    1.2911    0.6648
    0.1884    0.4482    0.5556    0.2958


C(:,:,3) =

    0.1878    0.3143    0.3492    0.2227
    0.2516    0.5528    0.7638    0.4625
    0.0638    0.2385    0.4146    0.2398

代码及运算

Matlab 复制代码
A = rand(2,3,2);
B = 0.25*ones(2,2,2);
C = convn(A,B,'valid')

C =

    0.8574    0.8072
相关推荐
后端小张9 小时前
【AI学习】深入探秘AI之神经网络的奥秘
人工智能·深度学习·神经网络·opencv·学习·机器学习·自然语言处理
哥布林学者15 小时前
吴恩达深度学习课程四:计算机视觉 第四周:卷积网络应用 (一) 人脸识别
深度学习·ai
_XU17 小时前
AI工具如何重塑我的开发日常
前端·人工智能·深度学习
人工智能培训18 小时前
图神经网络初探(1)
人工智能·深度学习·知识图谱·群体智能·智能体
吾在学习路21 小时前
故事型总结:Swin Transformer 是如何打破 Vision Transformer 壁垒的?
人工智能·深度学习·transformer
万俟淋曦1 天前
【论文速递】2025年第44周(Oct-26-Nov-01)(Robotics/Embodied AI/LLM)
人工智能·深度学习·ai·机器人·论文·具身智能·robotic
Dargon2881 天前
Simulink的SIL软件在环测试
开发语言·matlab·simulink·mbd软件开发
亚里随笔1 天前
偏离主路径:RLVR在参数空间中的非主方向学习机制
人工智能·深度学习·学习
鲨莎分不晴1 天前
深度学习轻量化算子:从公式证明到数值计算
人工智能·深度学习
yzx9910131 天前
[特殊字符] AI画廊:基于CNN的实时艺术风格迁移系统
人工智能·神经网络·cnn