31、matlab卷积运算:卷积运算、二维卷积、N维卷积

1、conv 卷积和多项式乘法

语法

语法1:w = conv(u,v) 返回向量 u 和 v 的卷积。

语法2:w = conv(u,v,shape) 返回如 shape 指定的卷积的分段。

参数

u,v --- 输入向量 shape --- 卷积的分段 'full' (默认) | 'same' | 'valid'

'full':全卷积 'same':与u大小相同的卷积的中心部分'valid':计算没有补零边缘的卷积部分

2、通过卷积计算多项式乘法

代码及运算

Matlab 复制代码
u = [1 0 1 1];
v = [2 7 1];
w = conv(u,v)

w =

     2     7     3     9     8     1

3、 向量卷积

代码及运算

Matlab 复制代码
u = [1 1 1 1];
v = [1 1 1 1 0 0 0 1 1];
w = conv(u,v)

w =

  列 1 至 11

     1     2     3     4     3     2     1     1     2     2     2

  列 12

     1

4、 卷积的中心部分

'same'代码及运算

Matlab 复制代码
u = [-1 2 1 3 1 -2 0 1 2];
v = [2 4 -1 1 1];
w = conv(u,v,'same')

w =

    11     7    14     0    -5     8     7     5    -1

'full'代码及运算

Matlab 复制代码
u = [-1 2 1 3 1 -2 0 1 2];
v = [2 4 -1 1 1];
w = conv(u,v,'full')

w =

  列 1 至 11

    -2     0    11     7    14     0    -5     8     7     5    -1

  列 12 至 13

     3     2

'valid'代码及运算

Matlab 复制代码
u = [-1 2 1 3 1 -2 0 1 2];
v = [2 4 -1 1 1];
w = conv(u,v,'valid')

w =

    14     0    -5     8     7

5、 conv2 二维卷积

语法

语法1:C = conv2(A,B) 返回矩阵 A 和 B 的二维卷积。

语法2:C = conv2(u,v,A) 首先求 A 的各列与向量 u 的卷积,然后求每行结果与向量 v 的卷积。

语法3:C = conv2(___,shape) 根据 shape 返回卷积的子区。

1)二维卷积

代码及运算

Matlab 复制代码
A = rand(3);
B = rand(4);
Cfull = conv2(A,B)%6*6
Csame = conv2(A,B,'same')%中心部位

Cfull =

    0.0781    0.8435    1.6181    1.6544    1.5357    0.7213
    0.2367    1.2223    2.9144    3.6484    2.8119    1.0920
    0.5183    1.4313    3.4028    4.2039    3.0881    1.3723
    0.2844    2.0170    2.9532    3.0694    2.6967    0.9839
    0.4857    1.3186    1.8013    1.5967    1.3232    0.4820
    0.5008    0.1639    0.8645    0.2304    0.3948    0.0831


Csame =

    3.4028    4.2039    3.0881
    2.9532    3.0694    2.6967
    1.8013    1.5967    1.3232

2)例子:提取二维台座边

代码及运算

Matlab 复制代码
A = zeros(10);
A(3:7,3:7) = ones(5);
mesh(A)

视图效果

1) 计算水平边

代码及运算

Matlab 复制代码
u = [1 0 -1]';
v = [1 2 1];
Ch = conv2(u,v,A);
mesh(Ch)

视图效果

2)计算垂直边

代码及运算

Matlab 复制代码
Cv = conv2(v,u,A);
mesh(Cv)

视图效果

3) 绘制组合边长

6、convn N 维卷积

语法

语法1:C = convn(A,B) 返回数组 A 和 B 的 N 维卷积。

语法2:C = convn(A,B,shape) 根据 shape 返回卷积的子区。

1)三维卷积

代码及运算

Matlab 复制代码
A = rand(2,3,2);
B = 0.25*ones(2,2,2);
C = convn(A,B)

C(:,:,1) =

    0.1765    0.2457    0.0935    0.0243
    0.1845    0.2652    0.3109    0.2301
    0.0080    0.0195    0.2174    0.2059


C(:,:,2) =

    0.3502    0.6570    0.4408    0.1340
    0.4375    0.7644    0.7622    0.4352
    0.0872    0.1074    0.3214    0.3013


C(:,:,3) =

    0.1737    0.4113    0.3472    0.1097
    0.2530    0.4991    0.4512    0.2051
    0.0793    0.0879    0.1040    0.0954

代码及运算

Matlab 复制代码
A = rand(2,3,2);
B = 0.25*ones(2,2,2);
C = convn(A,B,'same')

C(:,:,1) =

    1.1643    0.8855    0.4774
    0.6798    0.4946    0.2022


C(:,:,2) =

    0.6049    0.4434    0.2044
    0.3586    0.2106    0.0407

代码及运算

Matlab 复制代码
 A = rand(2,3,2);
B = 0.25*ones(2,2,2);
C = convn(A,B,'full')

C(:,:,1) =

    0.0297    0.2697    0.3863    0.1463
    0.1543    0.4794    0.5273    0.2023
    0.1246    0.2097    0.1410    0.0560


C(:,:,2) =

    0.2176    0.5840    0.7355    0.3690
    0.4059    1.0322    1.2911    0.6648
    0.1884    0.4482    0.5556    0.2958


C(:,:,3) =

    0.1878    0.3143    0.3492    0.2227
    0.2516    0.5528    0.7638    0.4625
    0.0638    0.2385    0.4146    0.2398

代码及运算

Matlab 复制代码
A = rand(2,3,2);
B = 0.25*ones(2,2,2);
C = convn(A,B,'valid')

C =

    0.8574    0.8072
相关推荐
m0_6786933337 分钟前
深度学习笔记23-LSTM实现火灾预测(Tensorflow)
笔记·深度学习·lstm
ayiya_Oese38 分钟前
[模型部署] 1. 模型导出
图像处理·python·深度学习·神经网络·视觉检测
layneyao39 分钟前
DeepSeek模型架构详解:从Transformer到MoE
深度学习·架构·transformer
FL171713142 小时前
MATLAB机器人系统工具箱中的loadrobot和importrobot
人工智能·matlab·机器人
后知后觉3 小时前
深度学习-最简单的Demo-直接运行
人工智能·深度学习
COOCC13 小时前
激活函数全解析:定义、分类与 17 种常用函数详解
人工智能·深度学习·神经网络·算法·机器学习·计算机视觉·自然语言处理
charles_vaez3 小时前
开源模型应用落地-模型上下文协议(MCP)-Resources-资源的使用逻辑
深度学习·语言模型·自然语言处理·开源
Ndmzi4 小时前
matlab与python问题解析
python·matlab
ayiya_Oese5 小时前
[训练和优化] 3. 模型优化
人工智能·python·深度学习·神经网络·机器学习
-一杯为品-5 小时前
【深度学习】#11 优化算法
人工智能·深度学习·算法