31、matlab卷积运算:卷积运算、二维卷积、N维卷积

1、conv 卷积和多项式乘法

语法

语法1:w = conv(u,v) 返回向量 u 和 v 的卷积。

语法2:w = conv(u,v,shape) 返回如 shape 指定的卷积的分段。

参数

u,v --- 输入向量 shape --- 卷积的分段 'full' (默认) | 'same' | 'valid'

'full':全卷积 'same':与u大小相同的卷积的中心部分'valid':计算没有补零边缘的卷积部分

2、通过卷积计算多项式乘法

代码及运算

Matlab 复制代码
u = [1 0 1 1];
v = [2 7 1];
w = conv(u,v)

w =

     2     7     3     9     8     1

3、 向量卷积

代码及运算

Matlab 复制代码
u = [1 1 1 1];
v = [1 1 1 1 0 0 0 1 1];
w = conv(u,v)

w =

  列 1 至 11

     1     2     3     4     3     2     1     1     2     2     2

  列 12

     1

4、 卷积的中心部分

'same'代码及运算

Matlab 复制代码
u = [-1 2 1 3 1 -2 0 1 2];
v = [2 4 -1 1 1];
w = conv(u,v,'same')

w =

    11     7    14     0    -5     8     7     5    -1

'full'代码及运算

Matlab 复制代码
u = [-1 2 1 3 1 -2 0 1 2];
v = [2 4 -1 1 1];
w = conv(u,v,'full')

w =

  列 1 至 11

    -2     0    11     7    14     0    -5     8     7     5    -1

  列 12 至 13

     3     2

'valid'代码及运算

Matlab 复制代码
u = [-1 2 1 3 1 -2 0 1 2];
v = [2 4 -1 1 1];
w = conv(u,v,'valid')

w =

    14     0    -5     8     7

5、 conv2 二维卷积

语法

语法1:C = conv2(A,B) 返回矩阵 A 和 B 的二维卷积。

语法2:C = conv2(u,v,A) 首先求 A 的各列与向量 u 的卷积,然后求每行结果与向量 v 的卷积。

语法3:C = conv2(___,shape) 根据 shape 返回卷积的子区。

1)二维卷积

代码及运算

Matlab 复制代码
A = rand(3);
B = rand(4);
Cfull = conv2(A,B)%6*6
Csame = conv2(A,B,'same')%中心部位

Cfull =

    0.0781    0.8435    1.6181    1.6544    1.5357    0.7213
    0.2367    1.2223    2.9144    3.6484    2.8119    1.0920
    0.5183    1.4313    3.4028    4.2039    3.0881    1.3723
    0.2844    2.0170    2.9532    3.0694    2.6967    0.9839
    0.4857    1.3186    1.8013    1.5967    1.3232    0.4820
    0.5008    0.1639    0.8645    0.2304    0.3948    0.0831


Csame =

    3.4028    4.2039    3.0881
    2.9532    3.0694    2.6967
    1.8013    1.5967    1.3232

2)例子:提取二维台座边

代码及运算

Matlab 复制代码
A = zeros(10);
A(3:7,3:7) = ones(5);
mesh(A)

视图效果

1) 计算水平边

代码及运算

Matlab 复制代码
u = [1 0 -1]';
v = [1 2 1];
Ch = conv2(u,v,A);
mesh(Ch)

视图效果

2)计算垂直边

代码及运算

Matlab 复制代码
Cv = conv2(v,u,A);
mesh(Cv)

视图效果

3) 绘制组合边长

6、convn N 维卷积

语法

语法1:C = convn(A,B) 返回数组 A 和 B 的 N 维卷积。

语法2:C = convn(A,B,shape) 根据 shape 返回卷积的子区。

1)三维卷积

代码及运算

Matlab 复制代码
A = rand(2,3,2);
B = 0.25*ones(2,2,2);
C = convn(A,B)

C(:,:,1) =

    0.1765    0.2457    0.0935    0.0243
    0.1845    0.2652    0.3109    0.2301
    0.0080    0.0195    0.2174    0.2059


C(:,:,2) =

    0.3502    0.6570    0.4408    0.1340
    0.4375    0.7644    0.7622    0.4352
    0.0872    0.1074    0.3214    0.3013


C(:,:,3) =

    0.1737    0.4113    0.3472    0.1097
    0.2530    0.4991    0.4512    0.2051
    0.0793    0.0879    0.1040    0.0954

代码及运算

Matlab 复制代码
A = rand(2,3,2);
B = 0.25*ones(2,2,2);
C = convn(A,B,'same')

C(:,:,1) =

    1.1643    0.8855    0.4774
    0.6798    0.4946    0.2022


C(:,:,2) =

    0.6049    0.4434    0.2044
    0.3586    0.2106    0.0407

代码及运算

Matlab 复制代码
 A = rand(2,3,2);
B = 0.25*ones(2,2,2);
C = convn(A,B,'full')

C(:,:,1) =

    0.0297    0.2697    0.3863    0.1463
    0.1543    0.4794    0.5273    0.2023
    0.1246    0.2097    0.1410    0.0560


C(:,:,2) =

    0.2176    0.5840    0.7355    0.3690
    0.4059    1.0322    1.2911    0.6648
    0.1884    0.4482    0.5556    0.2958


C(:,:,3) =

    0.1878    0.3143    0.3492    0.2227
    0.2516    0.5528    0.7638    0.4625
    0.0638    0.2385    0.4146    0.2398

代码及运算

Matlab 复制代码
A = rand(2,3,2);
B = 0.25*ones(2,2,2);
C = convn(A,B,'valid')

C =

    0.8574    0.8072
相关推荐
AI人工智能+1 小时前
炫光活体检测技术:通过光学技术实现高效、安全的身份验证,有效防御多种伪造手段。
人工智能·深度学习·人脸识别·活体检测
东方佑2 小时前
打破常规:“无注意力”神经网络为何依然有效?
人工智能·深度学习·神经网络
星马梦缘2 小时前
Matlab机器人工具箱7 搬运动画展示
matlab·机器人·仿真·逆解
Francek Chen3 小时前
【深度学习计算机视觉】03:目标检测和边界框
人工智能·pytorch·深度学习·目标检测·计算机视觉·边界框
九章云极AladdinEdu3 小时前
AI集群全链路监控:从GPU微架构指标到业务Metric关联
人工智能·pytorch·深度学习·架构·开源·gpu算力
惯导马工3 小时前
【论文导读】IDOL: Inertial Deep Orientation-Estimation and Localization
深度学习·算法
爱学习的茄子3 小时前
Function Call:让AI从文本生成走向智能交互的技术革命
前端·深度学习·openai
chao1898443 小时前
基于MATLAB的线性判别分析(LDA)人脸识别实现
开发语言·matlab
CoovallyAIHub3 小时前
基于YOLO集成模型的无人机多光谱风电部件缺陷检测
深度学习·算法·计算机视觉
CoovallyAIHub3 小时前
几十个像素的小目标,为何难倒无人机?LCW-YOLO让无人机小目标检测不再卡顿
深度学习·算法·计算机视觉