基于可解释性深度学习的马铃薯叶病害检测

数据集来自kaggle文章,代码较为简单。

复制代码
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)


# Input data files are available in the read-only "../input/" directory
# For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory


import os
for dirname, _, filenames in os.walk('/kaggle/input'):
    for filename in filenames:
        print(os.path.join(dirname, filename))

Neural Network Model with TensorFlow and Keras for Classification

复制代码
import tensorflow as tf
from tensorflow.keras import models,layers
import matplotlib.pyplot as plt


BATCH_SIZE=32
IMAGE_SIZE=224
CHANNELS=3
EPOCHS=50

Loading Image Dataset for Training

复制代码
dataset=tf.keras.preprocessing.image_dataset_from_directory(
    "/kaggle/input/potato-dataset/PlantVillage",
    shuffle=True,
    image_size=(IMAGE_SIZE,IMAGE_SIZE),
    batch_size=BATCH_SIZE
)

Retrieving Class Names from the Dataset

复制代码
class_names=dataset.class_names
class_names

Data Visualization

复制代码
import os


Potato___Early_blight_dir = '/kaggle/input/potato-dataset/PlantVillage/Potato___Early_blight'
Potato___Late_blight_dir = '/kaggle/input/potato-dataset/PlantVillage/Potato___Late_blight'
Potato___healthy_dir = '/kaggle/input/potato-dataset/PlantVillage/Potato___healthy'
import matplotlib.pyplot as plt


# Define the categories and corresponding counts
categories = ['Early Leaf Blight','Late Leaf Blight','Healthy']
counts = [len(os.listdir(Potato___Early_blight_dir)), len(os.listdir(Potato___Late_blight_dir)), len(os.listdir(Potato___healthy_dir))]


# Create a bar plot to visualize the distribution of images
plt.figure(figsize=(12, 6))
plt.bar(categories, counts, color='skyblue')
plt.xlabel('Categories')
plt.ylabel('Number of Images')
plt.title('Distribution of Images in Different Categories')
plt.show()

Visualizing Sample Images from the Dataset

复制代码
plt.figure(figsize=(10,10))
for image_batch, labels_batch in dataset.take(1):
    print(image_batch.shape)
    print(labels_batch.numpy())
    for i in range(12):
        ax=plt.subplot(3,4,i+1)
        plt.imshow(image_batch[i].numpy().astype("uint8"))
        plt.title(class_names[labels_batch[i]])
        plt.axis("off")

Function to Split Dataset into Training and Validation Set

复制代码
def get_dataset_partitions_tf(ds, train_split=0.8, val_split=0.2, shuffle=True, shuffle_size=10000):
    assert(train_split+val_split)==1


    ds_size=len(ds)


    if shuffle:
        ds=ds.shuffle(shuffle_size, seed=12)


    train_size=int(train_split*ds_size)
    val_size=int(val_split*ds_size)


    train_ds=ds.take(train_size)
    val_ds=ds.skip(train_size).take(val_size)


    return train_ds, val_ds
train_ds, val_ds =get_dataset_partitions_tf(dataset)

Data Augmentation

复制代码
train_ds= train_ds.cache().shuffle(1000).prefetch(buffer_size=tf.data.AUTOTUNE)
val_ds= val_ds.cache().shuffle(1000).prefetch(buffer_size=tf.data.AUTOTUNE)
for image_batch, labels_batch in dataset.take(1):
    print(image_batch[0].numpy()/255)
pip install preprocessing
resize_and_rescale = tf.keras.Sequential([
    layers.Resizing(IMAGE_SIZE, IMAGE_SIZE),
    layers.Rescaling(1./255),
])
data_augmentation=tf.keras.Sequential([
    layers.RandomFlip("horizontal_and_vertical"),
    layers.RandomRotation(0.2),
])
n_classes=3

Our own Convolutional Neural Network (CNN) for Image Classification

复制代码
input_shape=(BATCH_SIZE, IMAGE_SIZE,IMAGE_SIZE,CHANNELS)
n_classes=3


model_1= models.Sequential([
    resize_and_rescale,
    data_augmentation,
    layers.Conv2D(32, kernel_size=(3,3), activation='relu', input_shape=input_shape),
    layers.MaxPooling2D((2,2)),
    layers.Conv2D(64, kernel_size=(3,3), activation='relu'),
    layers.MaxPooling2D((2,2)),
    layers.Conv2D(64, kernel_size=(3,3), activation='relu'),
    layers.MaxPooling2D((2,2)),
    layers.Conv2D(64, (3,3), activation='relu'),
    layers.MaxPooling2D((2,2)),
    layers.Conv2D(64, (3,3), activation='relu'),
    layers.MaxPooling2D((2,2)),
    layers.Conv2D(128, (3,3), activation='relu'),
    layers.MaxPooling2D((2,2)),
    layers.Flatten(),
    layers.Dense(256,activation='relu'),
    layers.Dense(n_classes, activation='softmax'),
])
model_1.build(input_shape=input_shape)
model_1.summary()
复制代码
model_1.compile(
    optimizer='adam',
    loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False),
    metrics=['accuracy']
)
history=model_1.fit(
    train_ds,
    batch_size=BATCH_SIZE,
    validation_data=val_ds,
    verbose=1,
    epochs=50
)
scores=model_1.evaluate(val_ds)

Training History Metrics Extraction

复制代码
acc=history.history['accuracy']
val_acc=history.history['val_accuracy']


loss=history.history['loss']
val_loss=history.history['val_loss']
history.history['accuracy']

Training History Visualization

复制代码
EPOCHS=50
plt.figure(figsize=(20,8))
plt.subplot(1,2,1)
plt.plot(range(EPOCHS), acc, label='Training Accuracy')
plt.plot(range(EPOCHS), val_acc, label='Validation Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')


plt.subplot(1, 2, 2)
plt.plot(range(EPOCHS), loss, label='Training Loss')
plt.plot(range(EPOCHS), val_loss, label='Validation Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

Prediction of Image Labels from Validation Dataset

复制代码
import numpy as np
for images_batch, labels_batch in val_ds.take(1):
  first_image=images_batch[0].numpy().astype("uint8")
  print("First image to predict")
  plt.imshow(first_image)
  print("Actual Label:",class_names[labels_batch[0].numpy()])


  batch_prediction = model_1.predict(images_batch)
  print("Predicted Label:",class_names[np.argmax(batch_prediction[0])])
复制代码
def predict(model, img):
  img_array=tf.keras.preprocessing.image.img_to_array(images[i].numpy())
  img_array=tf.expand_dims(img_array,0) #create a batch


  predictions=model.predict(img_array)


  predicted_class=class_names[np.argmax(predictions[0])]
  confidence=round(100*(np.max(predictions[0])),2)
  return predicted_class, confidence
plt.figure(figsize=(15,15))
for images, labels in val_ds.take(1):
  for i in range(1):
    ax=plt.subplot(3,3,i+1)
    plt.imshow(images[i].numpy().astype("uint8"))
    predicted_class, confidence=predict(model_1, images[i].numpy())


    actual_class=class_names[labels[i]]
    plt.title(f"Actual: {actual_class}, \n Predicted: {predicted_class}. \n Confidence: {confidence}%")
    plt.axis("off")
复制代码
plt.figure(figsize=(15,15))
for images, labels in val_ds.take(1):
  for i in range(9):
    ax=plt.subplot(3,3,i+1)
    plt.imshow(images[i].numpy().astype("uint8"))
    predicted_class, confidence=predict(model_1, images[i].numpy())


    actual_class=class_names[labels[i]]
    plt.title(f"Actual: {actual_class}, \n Predicted: {predicted_class}. \n Confidence: {confidence}%")
    plt.axis("off")

Saving the TensorFlow Model

复制代码
from tensorflow.keras.models import save_model


# Save the TensorFlow model in .h5 format


# With this line
model_1.save('/kaggle/working/model_potato_50epochs_99%acc.keras')

Evaluating Model Predictions on Validation Dataset

复制代码
# Initialize lists to store the results
y_true = []
y_pred = []


# Iterate over the validation dataset
for images, labels in val_ds:
    # Get the model's predictions
    predictions = model_1.predict(images)


    # Get the indices of the maximum values along an axis using argmax
    pred_labels = np.argmax(predictions, axis=1)


    # Extend the 'y_true' and 'y_pred' lists
    y_true.extend(labels.numpy())
    y_pred.extend(pred_labels)


# Convert lists to numpy arrays
y_true = np.array(y_true)
y_pred = np.array(y_pred)

Evaluation Metrics Calculation

复制代码
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score


# Calculate metrics
accuracy = accuracy_score(y_true, y_pred)
precision = precision_score(y_true, y_pred, average='weighted')
recall = recall_score(y_true, y_pred, average='weighted')
f1 = f1_score(y_true, y_pred, average='weighted')


print(f'Accuracy: {accuracy}')  # (accuracy = (TP+TN)/(TP+FP+TN+FN))
print(f'Precision: {precision}')  # (precision = TP/(TP+FP))
print(f'Recall: {recall}')  # (recall = TP/(TP+FN))
print(f'F1 Score: {f1}')  # (f1 score = 2/((1/Precision)+(1/Recall)))

Visualization of Confusion Matrix

复制代码
import seaborn as sns
from sklearn.metrics import confusion_matrix
import matplotlib.pyplot as plt


# Assuming y_true and y_pred are defined
cm = confusion_matrix(y_true, y_pred)
plt.figure(figsize=(10, 10))
sns.heatmap(cm, annot=True, fmt='d', cmap='Blues')
plt.xlabel('Predicted labels')
plt.ylabel('True labels')
plt.title('Confusion Matrix')
plt.show()

ROC Curve

复制代码
from sklearn.metrics import roc_curve, auc
from sklearn.preprocessing import LabelBinarizer
import matplotlib.pyplot as plt


# Binarize the output
lb = LabelBinarizer()
lb.fit(y_true)
y_test = lb.transform(y_true)
y_pred = lb.transform(y_pred)


n_classes = y_test.shape[1]


# Compute ROC curve and ROC area for each class
fpr = dict()
tpr = dict()
roc_auc = dict()
for i in range(n_classes):
    fpr[i], tpr[i], _ = roc_curve(y_test[:, i], y_pred[:, i])
    roc_auc[i] = auc(fpr[i], tpr[i])


# Plot all ROC curves
plt.figure()
for i in range(n_classes):
    plt.plot(fpr[i], tpr[i],
             label='ROC curve of class {0} (area = {1:0.2f})'
             ''.format(i, roc_auc[i]))


plt.plot([0, 1], [0, 1], 'k--')
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Receiver Operating Characteristic to Multi-Class')
plt.legend(loc="lower right")
plt.show()

AUC Score

复制代码
from sklearn.metrics import roc_auc_score


# Assuming y_true and y_pred are defined
# 'ovo' stands for One-vs-One
# 'macro' calculates metrics for each label, and finds their unweighted mean
auc = roc_auc_score(y_true, y_pred, multi_class='ovo', average='macro')


print(f'AUC Score: {auc}')  # (AUC Score = Area Under the ROC Curve)

Saving the TensorFlow Model

复制代码
from tensorflow.keras.models import save_model


# Save the TensorFlow model in .h5 format


# With this line
model_1.save('/kaggle/working/model_potato_50epochs_99%acc1.keras')

CNN Architecture Specification of the Base Research Paper

复制代码
#Proposed Model in Research Paper
# activation units=64,128,256,512,512,4096,4096,1000
# kernel= 3,3
# max pooling =2,2
input_shape=(224,224,3)

Paper-Based CNN Model Architecture

复制代码
from tensorflow.keras import Input


model_paper = models.Sequential([
    Input(shape=input_shape),
    resize_and_rescale,
    data_augmentation,
    # conv1
    layers.Conv2D(64, kernel_size=(3,3), activation='relu'),
    layers.MaxPooling2D((2,2)),


    #conv2
    layers.Conv2D(128, kernel_size=(3,3), activation='relu'),
    layers.MaxPooling2D((2,2)),


    #conv3
    layers.Conv2D(256, kernel_size=(3,3), activation='relu'),
    layers.MaxPooling2D((2,2)),


    #conv4
    layers.Conv2D(512, (3,3), activation='relu'),
    layers.MaxPooling2D((2,2)),


    #conv5
    layers.Conv2D(512, (3,3), activation='relu'),
    layers.MaxPooling2D((2,2)),


    layers.Flatten(),
    layers.Dense(4096, activation='relu'),
    layers.Dense(4096, activation='relu'),
    layers.Dense(1000, activation='relu'),
    layers.Dense(n_classes, activation='softmax'),
])
model_paper.summary()

Compilation of the Paper-Based CNN Model

复制代码
model_paper.compile(
    optimizer='adam',
    loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False),
    metrics=['accuracy']
)

Training the Paper-Based CNN Model

复制代码
history_paper=model_paper.fit(
    train_ds,
    batch_size=BATCH_SIZE,
    validation_data=val_ds,
    verbose=1,
    epochs=50
)
scores_paper=model_paper.evaluate(val_ds)
acc=history_paper.history['accuracy']
val_acc=history_paper.history['val_accuracy']


loss=history_paper.history['loss']
val_loss=history_paper.history['val_loss']
history_paper.history['accuracy']

Visualization of Training and Validation Metrics of Base Paper Model

复制代码
EPOCHS=50
plt.figure(figsize=(20,8))
plt.subplot(1,2,1)
plt.plot(range(EPOCHS), acc, label='Training Accuracy')
plt.plot(range(EPOCHS), val_acc, label='Validation Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')


plt.subplot(1, 2, 2)
plt.plot(range(EPOCHS), loss, label='Training Loss')
plt.plot(range(EPOCHS), val_loss, label='Validation Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

Prediction of Image Label from Validation Dataset

复制代码
import numpy as np
for images_batch, labels_batch in val_ds.take(1):
  first_image=images_batch[0].numpy().astype("uint8")
  print("First image to predict")
  plt.imshow(first_image)
  print("Actual Label:",class_names[labels_batch[0].numpy()])


  batch_prediction = model_paper.predict(images_batch)
  print("Predicted Label:",class_names[np.argmax(batch_prediction[0])])
复制代码
def predict(model, img):
  img_array=tf.keras.preprocessing.image.img_to_array(images[i].numpy())
  img_array=tf.expand_dims(img_array,0) #create a batch


  predictions=model.predict(img_array)


  predicted_class=class_names[np.argmax(predictions[0])]
  confidence=round(100*(np.max(predictions[0])),2)
  return predicted_class, confidence
plt.figure(figsize=(15,15))
for images, labels in val_ds.take(1):
  for i in range(1):
    ax=plt.subplot(3,3,i+1)
    plt.imshow(images[i].numpy().astype("uint8"))
    predicted_class, confidence=predict(model_paper, images[i].numpy())


    actual_class=class_names[labels[i]]
    plt.title(f"Actual: {actual_class}, \n Predicted: {predicted_class}. \n Confidence: {confidence}%")
    plt.axis("off")
复制代码
plt.figure(figsize=(15,15))
for images, labels in val_ds.take(1):
  for i in range(9):
    ax=plt.subplot(3,3,i+1)
    plt.imshow(images[i].numpy().astype("uint8"))
    predicted_class, confidence=predict(model_paper, images[i].numpy())


    actual_class=class_names[labels[i]]
    plt.title(f"Actual: {actual_class}, \n Predicted: {predicted_class}. \n Confidence: {confidence}%")
    plt.axis("off")

Saving the Tensorflow model of the base paper

复制代码
from tensorflow.keras.models import save_model


# Save the TensorFlow model in .h5 format


# With this line
model_paper.save('/kaggle/working/model_potato_basepaper.keras')
# Initialize lists to store the results
y_true = []
y_pred = []


# Iterate over the validation dataset
for images, labels in val_ds:
    # Get the model's predictions
    predictions = model_paper.predict(images)


    # Get the indices of the maximum values along an axis using argmax
    pred_labels = np.argmax(predictions, axis=1)


    # Extend the 'y_true' and 'y_pred' lists
    y_true.extend(labels.numpy())
    y_pred.extend(pred_labels)


# Convert lists to numpy arrays
y_true = np.array(y_true)
y_pred = np.array(y_pred)

Calculating Classification Metrics

复制代码
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score


# Calculate metrics
accuracy = accuracy_score(y_true, y_pred)
precision = precision_score(y_true, y_pred, average='weighted')
recall = recall_score(y_true, y_pred, average='weighted')
f1 = f1_score(y_true, y_pred, average='weighted')


print(f'Accuracy: {accuracy}')
print(f'Precision: {precision}')
print(f'Recall: {recall}')
print(f'F1 Score: {f1}')

The provided code segment visualizes the confusion matrix using Seaborn's heatmap function

复制代码
import seaborn as sns
from sklearn.metrics import confusion_matrix
import matplotlib.pyplot as plt


# Assuming y_true and y_pred are defined
cm = confusion_matrix(y_true, y_pred)
plt.figure(figsize=(10, 10))
sns.heatmap(cm, annot=True, fmt='d', cmap='Blues')
plt.xlabel('Predicted labels')
plt.ylabel('True labels')
plt.title('Confusion Matrix')
plt.show()
复制代码
from sklearn.metrics import roc_curve, auc
from sklearn.preprocessing import LabelBinarizer
import matplotlib.pyplot as plt


# Binarize the output
lb = LabelBinarizer()
lb.fit(y_true)
y_test = lb.transform(y_true)
y_pred = lb.transform(y_pred)


n_classes = y_test.shape[1]


# Compute ROC curve and ROC area for each class
fpr = dict()
tpr = dict()
roc_auc = dict()
for i in range(n_classes):
    fpr[i], tpr[i], _ = roc_curve(y_test[:, i], y_pred[:, i])
    roc_auc[i] = auc(fpr[i], tpr[i])


# Plot all ROC curves
plt.figure()
for i in range(n_classes):
    plt.plot(fpr[i], tpr[i],
             label='ROC curve of class {0} (area = {1:0.2f})'
             ''.format(i, roc_auc[i]))


plt.plot([0, 1], [0, 1], 'k--')
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Receiver Operating Characteristic to Multi-Class')
plt.legend(loc="lower right")
plt.show()
复制代码
from sklearn.metrics import roc_auc_score


# Assuming y_true and y_pred are defined
# 'ovo' stands for One-vs-One
# 'macro' calculates metrics for each label, and finds their unweighted mean
auc = roc_auc_score(y_true, y_pred, multi_class='ovo', average='macro')


print(f'AUC Score: {auc}')  # (AUC Score = Area Under the ROC Curve)

Using Explainable AI to explain the predictions of our own CNN model,Taking an image and predicting it's class using our own CNN Model

复制代码
import numpy as np
import matplotlib.pyplot as plt


for images_batch, labels_batch in val_ds.take(1):
  first_image = images_batch[0].numpy().astype("uint8")
  print("First image to predict")
  plt.imshow(first_image)
  print("Actual Label:", class_names[labels_batch[0].numpy()])


  batch_prediction = model_1.predict(images_batch)
  top_3_pred_indices = np.argsort(batch_prediction[0])[-3:][::-1]
  top_3_pred_labels = [class_names[index] for index in top_3_pred_indices]
  top_3_pred_values = [batch_prediction[0][index] for index in top_3_pred_indices]
  top_3_pred_percentages = [value * 100 for value in top_3_pred_values]
  print("Top 3 Predicted Labels:", top_3_pred_labels)
  print("Top 3 Predicted Probabilities (%):", top_3_pred_percentages)


  # Plotting the top 3 predictions
  plt.figure(figsize=(6, 3))
  plt.bar(top_3_pred_labels, top_3_pred_percentages)
  plt.title('Top 3 Predictions')
  plt.xlabel('Classes')
  plt.ylabel('Prediction Probabilities (%)')
  plt.show()

Model Explainability with LIME (Local Interpretable Model-Agnostic Explanations)

复制代码
pip install lime

Setting up Lime for Image Explanation

复制代码
%load_ext autoreload
%autoreload 2
import os,sys
try:
    import lime
except:
    sys.path.append(os.path.join('..', '..')) # add the current directory
    import lime
from lime import lime_image
explainer = lime_image.LimeImageExplainer()
%%time
# Hide color is the color for a superpixel turned OFF. Alternatively, if it is NONE, the superpixel will be replaced by the average of its pixels
explanation = explainer.explain_instance(images_batch[0].numpy().astype('double'), model_1.predict, top_labels=3, hide_color=0, num_samples=1000)
from skimage.segmentation import mark_boundaries

Superpixel for the top most Prediction

复制代码
#here hide_rest is True
temp, mask = explanation.get_image_and_mask(explanation.top_labels[0], positive_only=True, num_features=3, hide_rest=True)
plt.imshow(mark_boundaries(temp / 2 + 0.5, mask))
复制代码
#here hide_rest is False
temp, mask = explanation.get_image_and_mask(explanation.top_labels[0], positive_only=True, num_features=10, hide_rest=False)
plt.imshow(mark_boundaries(temp / 2 + 0.5, mask))

Visualizing 'pros and cons'

复制代码
temp, mask = explanation.get_image_and_mask(explanation.top_labels[0], positive_only=False, num_features=10, hide_rest=False)
plt.imshow(mark_boundaries(temp / 2 + 0.5, mask))
复制代码
temp, mask = explanation.get_image_and_mask(explanation.top_labels[0], positive_only=False, num_features=1000, hide_rest=False, min_weight=0.1)
plt.imshow(mark_boundaries(temp / 2 + 0.5, mask))

Explaination Heatmap plot with weights

复制代码
#Select the same class explained on the figures above.
ind =  explanation.top_labels[0]


#Map each explanation weight to the corresponding superpixel
dict_heatmap = dict(explanation.local_exp[ind])
heatmap = np.vectorize(dict_heatmap.get)(explanation.segments)


#Plot. The visualization makes more sense if a symmetrical colorbar is used.
plt.imshow(heatmap, cmap = 'RdBu', vmin  = -heatmap.max(), vmax = heatmap.max())
plt.colorbar()

Second Prediction in the List

复制代码
temp, mask = explanation.get_image_and_mask(explanation.top_labels[1], positive_only=True, num_features=5, hide_rest=True)
plt.imshow(mark_boundaries(temp / 2 + 0.5, mask))

Rest of the image from the second prediction i.e. top_labels[1]

复制代码
temp, mask = explanation.get_image_and_mask(explanation.top_labels[1], positive_only=True, num_features=5, hide_rest=False)
plt.imshow(mark_boundaries(temp / 2 + 0.5, mask))

Visualizing 'pros and cons'

复制代码
temp, mask = explanation.get_image_and_mask(explanation.top_labels[1], positive_only=False, num_features=10, hide_rest=False)
plt.imshow(mark_boundaries(temp / 2 + 0.5, mask))
复制代码
temp, mask = explanation.get_image_and_mask(explanation.top_labels[1], positive_only=False, num_features=1000, hide_rest=False, min_weight=0.1)
plt.imshow(mark_boundaries(temp / 2 + 0.5, mask))
复制代码
#Select the same class explained on the figures above.
ind =  explanation.top_labels[1]


#Map each explanation weight to the corresponding superpixel
dict_heatmap = dict(explanation.local_exp[ind])
heatmap = np.vectorize(dict_heatmap.get)(explanation.segments)


#Plot. The visualization makes more sense if a symmetrical colorbar is used.
plt.imshow(heatmap, cmap = 'RdBu', vmin  = -heatmap.max(), vmax = heatmap.max())
plt.colorbar()
复制代码
from lime import lime_image
explainer = lime_image.LimeImageExplainer()
explanation = explainer.explain_instance(images_batch[0].numpy().astype('double'), model_1.predict,top_labels=3, hide_color=0, num_samples=1000)
from skimage.segmentation import mark_boundaries


temp_1, mask_1 = explanation.get_image_and_mask(explanation.top_labels[0], positive_only=True, num_features=5, hide_rest=True)
temp_2, mask_2 = explanation.get_image_and_mask(explanation.top_labels[0], positive_only=False, num_features=10, hide_rest=False)


fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(15,15))
ax1.imshow(mark_boundaries(temp_1, mask_1))
ax2.imshow(mark_boundaries(temp_2, mask_2))
ax1.axis('off')
ax2.axis('off')


plt.savefig('mask_default.png')

工学博士,担任《Mechanical System and Signal Processing》《中国电机工程学报》《控制与决策》等期刊审稿专家,擅长领域:现代信号处理,机器学习,深度学习,数字孪生,时间序列分析,设备缺陷检测、设备异常检测、设备智能故障诊断与健康管理PHM等。

相关推荐
arbboter13 分钟前
【AI插件开发】Notepad++ AI插件开发实践:实现对话窗口功能
人工智能·notepad++·notepad++插件开发·ai对话窗口·异步模型调用·实时输出渲染·动态模型切换
加点油。。。。18 分钟前
Matlab绘图(三)——设置图例的位置
开发语言·matlab·绘图
硬匠的博客21 分钟前
C/C++指针
c语言·开发语言·c++
SunsPlanter27 分钟前
机器学习期末
人工智能·机器学习
吹风看太阳28 分钟前
机器学习02——RNN
人工智能·rnn·机器学习
视觉&物联智能30 分钟前
【杂谈】-自动驾驶变革:货运革新与机器人出租车崛起
人工智能·ai·机器人·自动驾驶·agi
独立开阀者_FwtCoder38 分钟前
一口气讲清楚:LLM、MCP、EMB
前端·javascript·人工智能
蚝油菜花38 分钟前
让AI听懂你的建模需求!BlenderMCP:自然语言指令直接操控 Blender,一句话生成复杂3D场景
人工智能·开源
向日葵.38 分钟前
CMake学习
开发语言·c++·学习
蚝油菜花40 分钟前
自然语言生成代码一键搞定!Codex CLI:OpenAI开源终端AI编程助手,代码重构+测试全自动
人工智能·开源