Elasticsearch:智能 RAG,获取周围分块(一)

作者:来自 Elastic Sunile Manjee

在检索增强生成 (RAG) 领域,一个持续存在的挑战是找到输入大型语言模型 (LLM) 的最佳数据量。数据太少会导致响应不足或不准确,而数据太多会导致答案模糊。这种微妙的平衡启发我开发了一个专注于智能分块和利用 Elasticsearch 向量数据库的 notebook

动机

构建此 notebook 的主要动机是通过解决数据分块的挑战来展示一种改进的 RAG 方法。传统方法通常无法动态调整输入到 LLM 的数据大小,要么因过多上下文而使模型不堪重负,要么因太少而使其不足。此笔记本旨在达到适当的平衡,为 LLM 提供足够的信息以生成精确且与上下文相关的响应。但是,必须注意的是,没有一刀切的解决方案。

此方法特别适用于内容在较长部分或章节中流动的书籍和类似文本。但是,它可能需要适应结构化为较短、不同部分的文本,例如研究论文或文章,其中每个部分可能涵盖不同的主题。在这种情况下,可能需要额外的策略来有效地分块和检索相关内容。

方法

获取周围块

核心思想是将源文本划分为可管理的块,确保每个块包含适量的信息。为了进行演示,我使用了《哈利波特与魔法石》中的文本。文本被划分为章节,每个章节进一步划分为更小的块。这些块及其密集和稀疏 (ELSER) 向量表示都被编入 Elasticsearch 向量数据库的索引中。

为区块分配编号

章节中的每个区块都被分配了一个连续的整数,使我们能够识别其位置。当找到匹配的区块时,章节编号和区块编号用于检索周围的区块,为 LLM 提供额外的上下文。

Elasticsearch 中的向量数据库

这些块及其向量表示被提取到 Elasticsearch Cloud 实例中。Elasticsearch 强大的向量搜索功能使其成为托管这些块的理想选择,允许根据用户查询的语义内容或文本匹配高效地检索最相关的块。

AI 搜索

为了检索相关块,我采用了一种混合搜索策略,同时使用密集向量比较、稀疏向量比较和文本搜索。这种多方面的方法可确保搜索结果在语义上丰富且在上下文上准确。发出查询以查找匹配的块,该查询返回块编号和章节。然后根据匹配的块获取该章节的周围块。

RAG 模式

当进行查询时,搜索流程执行以下步骤:

  1. 查询分析:将用户的查询转换为密集和稀疏向量,以从 Elasticsearch 索引中检索最相关的块。
  2. 块检索:使用 AI 搜索策略,系统检索最相关的块。
  3. 上下文扩展:还会检索相邻块(n-1 和 n+1),以提供更全面的上下文。如果该块是章节中的最后一块,则获取 n-1 和 n-2;如果它是第一块,则获取 n+1 和 n+2。
  4. LLM 响应:然后将这些智能选择的块输入到 LLM 中,确保它接收最佳信息量以生成精确且上下文相关的响应。

为什么这很重要

这种方法通过优化输入到 LLM 的输入数据来解决 RAG 的一个关键方面。通过利用智能分块和混合语义搜索,该方法提高了 LLM 生成的响应的准确性和相关性。它展示了一种可以广泛应用于 RAG 领域内各种应用的模式,从客户支持到内容生成等等。

结论

notebook 强调了 RAG 框架中智能数据分块的重要性,并演示了如何利用 Elasticsearch 矢量数据库来实现最佳结果。通过确保 LLM 接收到适量的信息,这种方法为更准确、上下文更丰富的响应铺平了道路,从而提高了 RAG 系统的整体效率。

准备好自己尝试了吗?开始免费试用

希望将 RAG 构建到你的应用程序中?想要尝试使用向量数据库的不同 LLMs?

查看 Github 上针对 LangChain、Cohere 等的示例笔记本,并立即加入 Elasticsearch Relevance Engine 培训

原文:Intelligent RAG, Fetch Surrounding Chunks --- Elastic Search Labs

相关推荐
数据大魔方6 小时前
【期货量化实战】日内动量策略:顺势而为的短线交易法(Python源码)
开发语言·数据库·python·mysql·算法·github·程序员创富
Chasing Aurora7 小时前
数据库连接+查询优化
数据库·sql·mysql·prompt·约束
倔强的石头_7 小时前
【金仓数据库】ksql 指南(六)—— 创建与管理用户和权限(KingbaseES 安全控制核心)
数据库
长路 ㅤ   7 小时前
ES索引切分方案4:索引+别名 应用层自己维护:时间序列索引
elasticsearch·索引模板·时间序列索引·别名系统·大数据优化
数据皮皮侠AI7 小时前
上市公司股票名称相似度(1990-2025)
大数据·人工智能·笔记·区块链·能源·1024程序员节
小熊officer8 小时前
Python字符串
开发语言·数据库·python
Zoey的笔记本8 小时前
金融行业数据可视化平台:破解数据割裂与决策迟滞的系统性方案
大数据·信息可视化·数据分析
渐暖°8 小时前
JDBC直连ORACLE进行查询
数据库·oracle
2501_933670798 小时前
大数据与财务管理专业就业岗位方向
大数据
萧曵 丶8 小时前
Next-Key Lock、记录锁、间隙锁浅谈
数据库·sql·mysql·mvcc·可重复读·幻读