使用阿里开源的Spring Cloud Alibaba AI开发第一个大模型应用

背景

前段时间看到Spring推出了SpringAI,可以方便快速的接入ChatGPT等国外的大模型,现在阿里巴巴也紧追脚步推出了Spring Cloud Alibaba AI,Spring Cloud Alibaba AI 目前基于 Spring AI 0.8.1 版本 API 完成通义系列大模型的接入。通义接入是基于阿里云 灵积模型服务,灵积模型服务建立在"模型即服务"(Model-as-a-Service,MaaS)的理念基础之上,围绕 AI 各领域模型,通过标准化的API提供包括模型推理、模型微调训练在内的多种模型服务。

介绍

Spring Cloud Alibaba AI 以 Spring AI 为基础,并在此基础上提供阿里云通义系列大模型全面适配,让用户在 5 分钟内开发基于通义大模型的 Java AI 应用。

官网链接:https://sca.aliyun.com/docs/2023/user-guide/ai/quick-start/

推荐查看官网资料,很详细。

意义

各大公司都推出了自己的大模型,这里不评各家大模型的优劣,而且大模型的建设所需要的极大成本不是普通人一台电脑就能搞定的,但是在此之外,大模型的其他方向的创新也很重要。

所以除了模型的训练,我们还可以在数据的收集和应用的创新上去开拓新的领域。ChatGPT收集的人类数据也不过一点点,如果提供的数据更多,未来会发生什么?现在大模型已经很多,但是AI应用其实还是缺乏的,未来的社交、电商、短视频等各个领域会不会被大模型给重构?可以期待一下。

现在也都在倡导不要再卷大模型了,要去多开发大模型应用,随着技术的积累,大模型的应用开发门槛也越来越低了。下面我们跟着阿里巴巴提供的Spring Cloud Alibaba AI去搭建一个自己的大模型应用。

体验第一个大模型应用开发

跟随阿里官方指导教程,搭建一个在线聊天应用。

开发聊天对话应用

step1: 在项目 pom.xml 中加入 2023.0.1.0 版本 Spring Cloud Alibaba 依赖:

xml 复制代码
<dependencyManagement>
  <dependencies>
    <dependency>
      <groupId>com.alibaba.cloud</groupId>
      <artifactId>spring-cloud-alibaba-dependencies</artifactId>
      <version>2023.0.1.0</version>
      <type>pom</type>
      <scope>import</scope>
     </dependency>
   </dependencies>
</dependencyManagement>

<dependencies>
  <dependency>
      <groupId>com.alibaba.cloud</groupId>
      <artifactId>spring-cloud-starter-alibaba-ai</artifactId>
  </dependency>
</dependencies>

step2: 在 application.yml 配置文件中加入以下配置:

xml 复制代码
spring:
  cloud:
    ai:
      tongyi:
        chat:
          options:
            # Replace the following key with a valid API-KEY.
            api-key: sk-a3d73b1709bf4a178c28ed7c8b3b5axx

step3: 编写聊天服务实现类,由 Spring AI 自动注入 ChatClient、StreamingChatClient,ChatClient 屏蔽底层通义大模型交互细节。

java 复制代码
@Service
public class TongYiSimpleServiceImpl extends AbstractTongYiServiceImpl {

  private final ChatClient chatClient;

  private final StreamingChatClient streamingChatClient;

  @Autowired
  public TongYiSimpleServiceImpl(ChatClient chatClient, StreamingChatClient streamingChatClient) {
    this.chatClient = chatClient;
    this.streamingChatClient = streamingChatClient;
  }
}

step4: 提供具体聊天逻辑实现

java 复制代码
@Service
public class TongYiSimpleServiceImpl extends AbstractTongYiServiceImpl {

  // ......

  @Override
  public String completion(String message) {

    Prompt prompt = new Prompt(new UserMessage(message));

    return chatClient.call(prompt).getResult().getOutput().getContent();
  }

  @Override
  public Map<String, String> streamCompletion(String message) {

    StringBuilder fullContent = new StringBuilder();

    streamingChatClient.stream(new Prompt(message))
        .flatMap(chatResponse -> Flux.fromIterable(chatResponse.getResults()))
        .map(content -> content.getOutput().getContent())
        .doOnNext(fullContent::append)
        .last()
        .map(lastContent -> Map.of(message, fullContent.toString()))
        .block();

    log.info(fullContent.toString());

    return Map.of(message, fullContent.toString());
  }

}

step5: 编写Spring入口并启动应用

java 复制代码
@SpringBootApplication
public class TongYiApplication {
  public static void main(String[] args) {
    SpringApplication.run(TongYiApplication.class);
  }
}

至此,便完成了最简单的聊天 AI 应用开发,与普通的 Spring Boot 应用开发步骤完全一致!

验证效果

浏览器地址栏输入:http://localhost:8080/ai/example

返回如下响应:

json 复制代码
{
    "Tell me a joke": "Sure, here's a classic one for you:\n\nWhy was the math book sad?\n\nBecause it had too many problems.\n\nI hope that made you smile! If you're looking for more, just let me know."
}

申请通义API-KEY

为使示例能够正常接入通义大模型,需要在阿里云开通 DashScope 灵积模型服务,申请有效的 API-KEY 并更新到应用配置文件。具体操作步骤可参见如下文档:
https://help.aliyun.com/zh/dashscope/developer-reference/activate-dashscope-and-create-an-api-key

相关推荐
CoderYanger13 小时前
C.滑动窗口-求子数组个数-越长越合法——2799. 统计完全子数组的数目
java·c语言·开发语言·数据结构·算法·leetcode·职场和发展
C++业余爱好者13 小时前
Java 提供了8种基本数据类型及封装类型介绍
java·开发语言·python
想用offer打牌13 小时前
RocketMQ如何防止消息丢失?
java·后端·架构·开源·rocketmq
老蒋新思维13 小时前
创客匠人峰会深度解析:知识变现的 “信任 - 效率” 双闭环 —— 从 “单次交易” 到 “终身复购” 的增长密码
大数据·网络·人工智能·tcp/ip·重构·数据挖掘·创客匠人
皮卡龙13 小时前
Java常用的JSON
java·开发语言·spring boot·json
大刘讲IT14 小时前
面向中小企业的企业AI Agent未来3年构建蓝图规划
人工智能·经验分享·ai·开源·制造
yzx99101314 小时前
深度学习的进化之路:从感知机到通用智能的曙光
人工智能·深度学习
是开心的栗子呀14 小时前
阿里云天池:预测二手车交易价格的机器学习项目-高效实现MAE低于500分
人工智能·机器学习·阿里云·ai·云计算
智算菩萨14 小时前
走向场景,走向融合:2025年末国产大模型的平台化竞赛与Agent新范式
人工智能·语言模型·aigc
KAI智习14 小时前
一张图看懂AI Agent的6种模式—MAS
人工智能·agent·多智能体·mas