【AI大模型】Transformers大模型库(十四):Datasets Viewer

目录

一、引言

[二、Datasets Viewer数据查看器](#二、Datasets Viewer数据查看器)

[2.1 概述](#2.1 概述)

[2.2 示例](#2.2 示例)

三、总结


一、引言

这里的Transformers指的是huggingface开发的大模型库,为huggingface上数以万计的预训练大模型提供预测、训练等服务。

🤗 Transformers 提供了数以千计的预训练模型,支持 100 多种语言的文本分类、信息抽取、问答、摘要、翻译、文本生成。它的宗旨是让最先进的 NLP 技术人人易用。

🤗 Transformers 提供了便于快速下载和使用的API,让你可以把预训练模型用在给定文本、在你的数据集上微调然后通过 model hub 与社区共享。同时,每个定义的 Python 模块均完全独立,方便修改和快速研究实验。

🤗 Transformers 支持三个最热门的深度学习库: Jax, PyTorch 以及 TensorFlow --- 并与之无缝整合。你可以直接使用一个框架训练你的模型然后用另一个加载和推理。

本文重点介绍Hugging Face的Datasets Viewer用法

二、Datasets Viewer数据查看器

2.1 概述

Datasets Viewer是一个轻量级的 Web API,用于可视化和探索存储在 Hugging Face Hub上的所有类型的数据集(计算机视觉、语音、文本和表格)。

数据集查看器的主要功能是将所有Hub 数据集自动转换为Parquet。

随着数据集的大小和数据类型的丰富性不断增加,预处理(存储和计算)这些数据集的成本可能非常高且耗时。为了帮助用户访问这些现代数据集,数据集查看器在后台运行服务器以提前生成 API 响应并将其存储在数据库中,以便当您通过 API 进行查询时立即返回它们。

让数据集查看器处理繁重的工作,这样您就可以在 Hugging Face 上的 100,000 多个数据集中的任何一个上使用简单的REST API来:

  • 列出数据集拆分、列名称和数据类型
  • 获取数据集大小(以行数或字节数计算)
  • 下载并查看数据集中任意索引处的行
  • 在数据集中搜索单词
  • 根据查询字符串过滤行
  • 获取有关数据的深刻统计数据
  • 以parquet 文件形式访问数据集,以便在您喜欢的处理或分析框架中使用

2.2 示例

比如,这是ShareGPT4Video/ShareGPT4Video数据集的Dataset Viewer

三、总结

以上步骤展示了如何使用Datasets Viewer来查看数据,Datasets是hugging face主要我存储资源之一,通过Datasets Viewer可以快速查看。

如果您还有时间,可以看看我的其他文章:

《AI---工程篇》

AI智能体研发之路-工程篇(一):Docker助力AI智能体开发提效

AI智能体研发之路-工程篇(二):Dify智能体开发平台一键部署

AI智能体研发之路-工程篇(三):大模型推理服务框架Ollama一键部署

AI智能体研发之路-工程篇(四):大模型推理服务框架Xinference一键部署

AI智能体研发之路-工程篇(五):大模型推理服务框架LocalAI一键部署

《AI---模型篇》

AI智能体研发之路-模型篇(一):大模型训练框架LLaMA-Factory在国内网络环境下的安装、部署及使用

AI智能体研发之路-模型篇(二):DeepSeek-V2-Chat 训练与推理实战

AI智能体研发之路-模型篇(三):中文大模型开、闭源之争

AI智能体研发之路-模型篇(四):一文入门pytorch开发

AI智能体研发之路-模型篇(五):pytorch vs tensorflow框架DNN网络结构源码级对比

AI智能体研发之路-模型篇(六):【机器学习】基于tensorflow实现你的第一个DNN网络

AI智能体研发之路-模型篇(七):【机器学习】基于YOLOv10实现你的第一个视觉AI大模型

AI智能体研发之路-模型篇(八):【机器学习】Qwen1.5-14B-Chat大模型训练与推理实战

AI智能体研发之路-模型篇(九):【机器学习】GLM4-9B-Chat大模型/GLM-4V-9B多模态大模型概述、原理及推理实战

《AI---Transformers应用》

【AI大模型】Transformers大模型库(一):Tokenizer

【AI大模型】Transformers大模型库(二):AutoModelForCausalLM

【AI大模型】Transformers大模型库(三):特殊标记(special tokens)

【AI大模型】Transformers大模型库(四):AutoTokenizer

【AI大模型】Transformers大模型库(五):AutoModel、Model Head及查看模型结构

相关推荐
张较瘦_1 小时前
[论文阅读] 人工智能 + 软件工程 | 需求获取访谈中LLM生成跟进问题研究:来龙去脉与创新突破
论文阅读·人工智能
一 铭2 小时前
AI领域新趋势:从提示(Prompt)工程到上下文(Context)工程
人工智能·语言模型·大模型·llm·prompt
顾道长生'3 小时前
(Arxiv-2025)通过动态 token 剔除实现无需训练的高效视频生成
计算机视觉·音视频·视频生成
云泽野4 小时前
【Java|集合类】list遍历的6种方式
java·python·list
麻雀无能为力5 小时前
CAU数据挖掘实验 表分析数据插件
人工智能·数据挖掘·中国农业大学
时序之心5 小时前
时空数据挖掘五大革新方向详解篇!
人工智能·数据挖掘·论文·时间序列
IMPYLH6 小时前
Python 的内置函数 reversed
笔记·python
.30-06Springfield6 小时前
人工智能概念之七:集成学习思想(Bagging、Boosting、Stacking)
人工智能·算法·机器学习·集成学习
说私域7 小时前
基于开源AI智能名片链动2+1模式S2B2C商城小程序的超级文化符号构建路径研究
人工智能·小程序·开源
永洪科技7 小时前
永洪科技荣获商业智能品牌影响力奖,全力打造”AI+决策”引擎
大数据·人工智能·科技·数据分析·数据可视化·bi