动手学深度学习(Pytorch版)代码实践 -卷积神经网络-20填充与步幅

20填充与步幅

python 复制代码
import torch
from torch import nn

# 此函数初始化卷积层权重,并对输入和输出提高和缩减相应的维数
def comp_conv2d(conv2d, X):
    # 这里的(1,1)表示批量大小和通道数都是1
    #将输入张量 X 的形状调整为 (1, 1, height, width)
    X = X.reshape((1,1) + X.shape)
    Y = conv2d(X) #张量X为 8 * 8,经过conv2d,填充为1,变为10 * 10
    #卷积核为3 * 3, 得到Y为 8 * 8
    return Y.reshape(Y.shape[2:])
    #将输出张量 Y 的形状从 (1, 1, new_height, new_width) 
    #变换为 (new_height, new_width),去掉批量大小和通道数的维度。

# 请注意,这里每边都填充了1行或1列,因此总共添加了2行或2列
conv2d = nn.Conv2d(1, 1, kernel_size=3, padding=1)
X = torch.rand(size=(8, 8))
print(comp_conv2d(conv2d, X).shape)
# torch.Size([8, 8])

# 步幅
# 高度和宽度的步幅设置为2,从而将输入的高度和宽度减半
conv2d = nn.Conv2d(1, 1, kernel_size=3, padding=1, stride=2)
print(comp_conv2d(conv2d, X).shape)
# torch.Size([4, 4])

conv2d = nn.Conv2d(1, 1, kernel_size=(3, 5), padding=(0, 1), stride=(3, 4))
print(comp_conv2d(conv2d, X).shape)
# torch.Size([2, 2])
相关推荐
是店小二呀15 分钟前
CANN 异构计算的极限扩展:从算子融合到多卡通信的统一优化策略
人工智能·深度学习·transformer
小徐xxx25 分钟前
ResNet介绍
深度学习·resnet·残差连接
骇城迷影25 分钟前
Makemore 核心面试题大汇总
人工智能·pytorch·python·深度学习·线性回归
2401_836235861 小时前
中安未来行驶证识别:以OCR智能力量,重构车辆证件数字化效率
人工智能·深度学习·ocr
Yaozh、1 小时前
【神经网络中的Dropout随机失活问题】
人工智能·深度学习·神经网络
mailangduoduo1 小时前
零基础教学连接远程服务器部署项目——VScode版本
服务器·pytorch·vscode·深度学习·ssh·gpu算力
Pyeako1 小时前
深度学习--卷积神经网络(下)
人工智能·python·深度学习·卷积神经网络·数据增强·保存最优模型·数据预处理dataset
风指引着方向1 小时前
动态形状算子支持:CANN ops-nn 的灵活推理方案
人工智能·深度学习·神经网络
魔乐社区2 小时前
MindSpeed LLM适配Qwen3-Coder-Next并上线魔乐社区,训练推理教程请查收
人工智能·深度学习·机器学习
多恩Stone2 小时前
【3D AICG 系列-6】OmniPart 训练流程梳理
人工智能·pytorch·算法·3d·aigc