动手学深度学习(Pytorch版)代码实践 -卷积神经网络-20填充与步幅

20填充与步幅

python 复制代码
import torch
from torch import nn

# 此函数初始化卷积层权重,并对输入和输出提高和缩减相应的维数
def comp_conv2d(conv2d, X):
    # 这里的(1,1)表示批量大小和通道数都是1
    #将输入张量 X 的形状调整为 (1, 1, height, width)
    X = X.reshape((1,1) + X.shape)
    Y = conv2d(X) #张量X为 8 * 8,经过conv2d,填充为1,变为10 * 10
    #卷积核为3 * 3, 得到Y为 8 * 8
    return Y.reshape(Y.shape[2:])
    #将输出张量 Y 的形状从 (1, 1, new_height, new_width) 
    #变换为 (new_height, new_width),去掉批量大小和通道数的维度。

# 请注意,这里每边都填充了1行或1列,因此总共添加了2行或2列
conv2d = nn.Conv2d(1, 1, kernel_size=3, padding=1)
X = torch.rand(size=(8, 8))
print(comp_conv2d(conv2d, X).shape)
# torch.Size([8, 8])

# 步幅
# 高度和宽度的步幅设置为2,从而将输入的高度和宽度减半
conv2d = nn.Conv2d(1, 1, kernel_size=3, padding=1, stride=2)
print(comp_conv2d(conv2d, X).shape)
# torch.Size([4, 4])

conv2d = nn.Conv2d(1, 1, kernel_size=(3, 5), padding=(0, 1), stride=(3, 4))
print(comp_conv2d(conv2d, X).shape)
# torch.Size([2, 2])
相关推荐
卧式纯绿16 分钟前
每日文献(八)——Part one
人工智能·yolo·目标检测·计算机视觉·目标跟踪·cnn
带娃的IT创业者1 小时前
《Python实战进阶》No39:模型部署——TensorFlow Serving 与 ONNX
pytorch·python·tensorflow·持续部署
xiangzhihong81 小时前
Amodal3R ,南洋理工推出的 3D 生成模型
人工智能·深度学习·计算机视觉
狂奔solar1 小时前
diffusion-vas 提升遮挡区域的分割精度
人工智能·深度学习
fantasy_arch5 小时前
深度学习--softmax回归
人工智能·深度学习·回归
Blossom.1185 小时前
量子计算与经典计算的融合与未来
人工智能·深度学习·机器学习·计算机视觉·量子计算
硅谷秋水6 小时前
MoLe-VLA:通过混合层实现的动态跳层视觉-语言-动作模型实现高效机器人操作
人工智能·深度学习·机器学习·计算机视觉·语言模型·机器人
2301_764441336 小时前
基于神经网络的肾脏疾病预测模型
人工智能·深度学习·神经网络
iiimZoey6 小时前
配置晟腾910b的PyTorch torch_npu环境
pytorch
HABuo6 小时前
【YOLOv8】YOLOv8改进系列(12)----替换主干网络之StarNet
人工智能·深度学习·yolo·目标检测·计算机视觉