0 前言
在开发复杂的AI应用时,赋予Agent记忆能力是一个关键步骤。这不仅能提高Agent的性能,还能使其在多轮对话中保持上下文连贯性。本文将详细介绍如何在Langchain框架中为Agent添加记忆功能,并深入解析每个步骤的原理和最佳实践。
Agent记忆功能的核心组件
在Langchain中,构建具有记忆功能的Agent主要涉及三个核心组件:
- 工具(Tools) : Agent用来执行特定任务的功能模块。
- 记忆(Memory) : 存储和检索对话历史的组件。
- 大语言模型(LLM) : 负责理解输入、决策和生成响应的核心智能体。
这三个组件的协同工作使Agent能够在多轮对话中保持连贯性并做出明智的决策。
1 构建Agent可用工具
首先,我们需要定义Agent可以使用的工具。
# 构建一个搜索工具,Langchain提供的一个封装,用于进行网络搜索。
search = SerpAPIWrapper()
# 创建一个数学计算工具,特殊的链,它使用LLM来解析和解决数学问题。
llm_math_chain = LLMMathChain(
llm=llm,
verbose=True
)
tools = [
Tool(
name = "Search",
func=search.run,
description="useful for when you need to answer questions about current events or the current state of the world"
),
Tool(
name="Calculator",
func=llm_math_chain.run,
description="useful for when you need to answer questions about math"
),
]
print(tools)
2 增加memory组件
接下来,我们需要为Agent添加记忆功能。Langchain提供了多种记忆组件,这里我们使用ConversationBufferMemory
:
from langchain.memory import ConversationBufferMemory
# 记忆组件
memory = ConversationBufferMemory(
# 指定了存储对话历史的键名
memory_key="chat_history",
# 确保返回的是消息对象,而不是字符串,这对于某些Agent类型很重要
return_messages=True
)
3 定义agent
现在我们有了工具和记忆组件,可以初始化我们的Agent了:
from langchain.agents import AgentType, initialize_agent
agent_chain = initialize_agent(
tools,
llm,
agent=AgentType.OPENAI_FUNCTIONS,
verbose=True,
handle_parsing_errors=True,
memory=memory
)
这里的关键点是:
AgentType.OPENAI_FUNCTIONS
: 这种Agent类型特别适合使用OpenAI的function calling特性。verbose=True
: 启用详细输出,有助于调试。handle_parsing_errors=True
: 自动处理解析错误,提高Agent的稳定性。memory=memory
: 将我们之前定义的记忆组件传递给Agent。
4 查看默认的agents prompt啥样
了解Agent使用的默认提示词模板非常重要,这有助于我们理解Agent的行为并进行必要的调整:
print(agent_chain.agent.prompt.messages)
print(agent_chain.agent.prompt.messages[0])
print(agent_chain.agent.prompt.messages[1])
print(agent_chain.agent.prompt.messages[2])
这将输出Agent使用的默认提示词模板。通常包括系统消息、人类消息提示词模板和AI消息模板。
5 优化Agent配置
为了更好地利用记忆功能,我们需要修改Agent的配置,确保它在每次交互中都能访问对话历史。
需要使用agent_kwargs传递参数,将chat_history传入
agent_chain = initialize_agent(
tools,
llm,
agent=AgentType.OPENAI_FUNCTIONS,
verbose=True,
handle_parsing_errors=True,#处理解析错误
agent_kwargs={
"extra_prompt_messages":[MessagesPlaceholder(variable_name="chat_history"),MessagesPlaceholder(variable_name="agent_scratchpad")],
},
memory=memory #记忆组件
)
这里的关键改变是:
-
agent_kwargs
: 通过这个参数,我们可以自定义Agent的行为 -
extra_prompt_messages:我们添加了两个MessagesPlaceholder:
chat_history
: 用于插入对话历史。agent_scratchpad
: 用于Agent的中间思考过程。
这样配置确保了Agent在每次决策时都能考虑到之前的对话内容。
6 验证优化后的提示词模板
最后,让我们检查一下优化后的提示词模板:
print(agent_chain.agent.prompt.messages)
print(agent_chain.agent.prompt.messages[0])
print(agent_chain.agent.prompt.messages[1])
print(agent_chain.agent.prompt.messages[2])
能看到新添加的chat_history
和agent_scratchpad
占位符。
7 总结
通过以上步骤,我们成功地为Langchain Agent添加了记忆功能。这使得Agent能够在多轮对话中保持上下文连贯性,大大提高了其在复杂任务中的表现。
添加记忆功能只是构建高效Agent的第一步。在实际应用中,你可能需要根据具体需求调整记忆组件的类型和参数,或者实现更复杂的记忆管理策略。
始终要注意平衡记忆的深度和Agent的响应速度。过多的历史信息可能会导致决策缓慢或偏离主题。因此,在生产环境中,你可能需要实现某种形式的记忆修剪或总结机制。
如何系统的去学习大模型LLM ?
作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。
但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的 AI大模型资料
包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
所有资料 ⚡️ ,朋友们如果有需要全套 《LLM大模型入门+进阶学习资源包 》,扫码获取~
一、全套AGI大模型学习路线
AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!
二、640套AI大模型报告合集
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
三、AI大模型经典PDF籍
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。
四、AI大模型商业化落地方案
阶段1:AI大模型时代的基础理解
- 目标:了解AI大模型的基本概念、发展历程和核心原理。
- 内容 :
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
- 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
- 内容 :
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.2.1 什么是Prompt
- L2.2.2 Prompt框架应用现状
- L2.2.3 基于GPTAS的Prompt框架
- L2.2.4 Prompt框架与Thought
- L2.2.5 Prompt框架与提示词
- L2.3 流水线工程
- L2.3.1 流水线工程的概念
- L2.3.2 流水线工程的优点
- L2.3.3 流水线工程的应用
- L2.4 总结与展望
- L2.1 API接口
阶段3:AI大模型应用架构实践
- 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
- 内容 :
- L3.1 Agent模型框架
- L3.1.1 Agent模型框架的设计理念
- L3.1.2 Agent模型框架的核心组件
- L3.1.3 Agent模型框架的实现细节
- L3.2 MetaGPT
- L3.2.1 MetaGPT的基本概念
- L3.2.2 MetaGPT的工作原理
- L3.2.3 MetaGPT的应用场景
- L3.3 ChatGLM
- L3.3.1 ChatGLM的特点
- L3.3.2 ChatGLM的开发环境
- L3.3.3 ChatGLM的使用示例
- L3.4 LLAMA
- L3.4.1 LLAMA的特点
- L3.4.2 LLAMA的开发环境
- L3.4.3 LLAMA的使用示例
- L3.5 其他大模型介绍
- L3.1 Agent模型框架
阶段4:AI大模型私有化部署
- 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
- 内容 :
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
学习计划:
- 阶段1:1-2个月,建立AI大模型的基础知识体系。
- 阶段2:2-3个月,专注于API应用开发能力的提升。
- 阶段3:3-4个月,深入实践AI大模型的应用架构和私有化部署。
- 阶段4:4-5个月,专注于高级模型的应用和部署。
这份完整版的所有 ⚡️ 大模型 LLM 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
全套 《LLM大模型入门+进阶学习资源包 》↓↓↓ 获取~