均匀采样信号的鲁棒Savistky-Golay滤波(MATLAB)

S-G滤波器又称S-G卷积平滑器,它是一种特殊的低通滤波器,用来平滑噪声数据。该滤波器被广泛地运用于信号去噪,采用在时域内基于多项式最小二乘法及窗口移动实现最佳拟合的方法。与通常的滤波器要经过时域-频域-时域变换不同,S-G滤波直接处理时域数据进行平滑,其平滑效果随窗口宽度不同而不同。相对于均值平滑滤波,S-G滤波更能保留相对极大值、极小值和宽度等分布特征。该滤波算法的另一优点是其运算量相对较小,对计算机的内存及数据处理能力要求较低。鉴于此,采用一种鲁棒Savistky-Golay滤波器对均匀采样信号进行降噪平滑,运行环境MATLAB 2021。

复制代码
for i = 1:step:N

    ind1 = max(1,i-half_window) ;
    ind2 = min(N,i+half_window) ;
    y_spl = y_input(ind1:ind2) ;
    x_spl = [ind1:ind2]' ;

    weights = ones(size(y_spl)) ;

    p = inf(order+1,1) ; s = inf ; ds = 1 ; dp = 1 ;

    X = repmat(x_spl,1,order+1).^[order:-1:0] ;
    c = 4.685 ; nb_iter = 0 ;

    while (abs(ds) >= opts.TolFun) || (abs(dp) >= opts.TolX)

        if nb_iter > opts.MaxIter
            break
        end

        nb_iter = nb_iter+1 ;

        old_p = p ;
        p = (sqrt(weights).*X)\(sqrt(weights).*y_spl) ;
    
        y_spl_calc = X*p ;
        r = y_spl_calc-y_spl ;
        tau = median(abs(r-median(r)))/0.6745 ;
        if tau == 0
            s = std(r)*sqrt(1+1/numel(y_spl)+(i-mean(x_spl)).^2/sum((x_spl-mean(x_spl)).^2)) ;
            break
        end
        z = r/tau ;
        weights = (abs(z)<c).*(1-(z/c).^2).^2 ;
        weights = weights.*(weights>=0) ; 
        old_s = s ;
        s = std(r,weights)*sqrt(1+1/numel(y_spl)+(i-sum(weights.*x_spl)./sum(weights)).^2/sum((x_spl-sum(weights.*x_spl)./sum(weights)).^2)) ;
        dp = max((old_p-p)./p) ;
        ds = (old_s-s)/s ;

    end

    y3(i,:) = p' ;
    y2(i,1) = s ;
    y1(i,1) = polyval(p,i) ;
 
end

if y_input_type == "row"
    y1 = y1' ;
    y2 = y2' ;
    x3 = y3' ;
    y_input = y_input' ;
    x_interp = 1:step:N ;
    x_query = 1:N ;
else
    x_interp = [1:step:N]' ;
    x_query = [1:N]' ;
end

if step == 1
    % No need for interpolation.
    return
end

y1 = interp1(x_interp,y1(1:step:N),x_query,opts.Interpolation,"extrap") ;
y2 = interp1(x_interp,y2(1:step:N),x_query,opts.Interpolation,"extrap") ;
y3 = interp1(x_interp,y3(1:step:N,:),x_query,opts.Interpolation,"extrap") ;
复制代码
  工学博士,担任《Mechanical System and Signal Processing》《中国电机工程学报》《控制与决策》等期刊审稿专家,擅长领域:现代信号处理,机器学习,深度学习,数字孪生,时间序列分析,设备缺陷检测、设备异常检测、设备智能故障诊断与健康管理PHM等。

  代码通过知乎学术咨询获得:https://www.zhihu.com/consult/people/792359672131756032?isMe=1
相关推荐
愈努力俞幸运11 分钟前
c++ 头文件
开发语言·c++
T.D.C14 分钟前
【OpenCV】使用opencv找哈士奇的脸
人工智能·opencv·计算机视觉
永日4567017 分钟前
学习日记-day24-6.8
开发语言·学习·php
BillKu18 分钟前
Java后端检查空条件查询
java·开发语言
科研工作站23 分钟前
【创新算法】改进深度优先搜索算法配合二进制粒子群的配电网故障恢复重构研究
matlab·配电网·故障恢复·改进粒子群·深度优先搜索·33节点
大霸王龙31 分钟前
软件工程的软件生命周期通常分为以下主要阶段
大数据·人工智能·旅游
十五年专注C++开发35 分钟前
CMake基础:gcc/g++编译选项详解
开发语言·c++·gcc·g++
Q8137574601 小时前
中阳视角下的资产配置趋势分析与算法支持
算法
yvestine1 小时前
自然语言处理——文本表示
人工智能·python·算法·自然语言处理·文本表示
vortex51 小时前
探索 Shell:选择适合你的命令行利器 bash, zsh, fish, dash, sh...
linux·开发语言·bash·shell·dash