均匀采样信号的鲁棒Savistky-Golay滤波(MATLAB)

S-G滤波器又称S-G卷积平滑器,它是一种特殊的低通滤波器,用来平滑噪声数据。该滤波器被广泛地运用于信号去噪,采用在时域内基于多项式最小二乘法及窗口移动实现最佳拟合的方法。与通常的滤波器要经过时域-频域-时域变换不同,S-G滤波直接处理时域数据进行平滑,其平滑效果随窗口宽度不同而不同。相对于均值平滑滤波,S-G滤波更能保留相对极大值、极小值和宽度等分布特征。该滤波算法的另一优点是其运算量相对较小,对计算机的内存及数据处理能力要求较低。鉴于此,采用一种鲁棒Savistky-Golay滤波器对均匀采样信号进行降噪平滑,运行环境MATLAB 2021。

复制代码
for i = 1:step:N

    ind1 = max(1,i-half_window) ;
    ind2 = min(N,i+half_window) ;
    y_spl = y_input(ind1:ind2) ;
    x_spl = [ind1:ind2]' ;

    weights = ones(size(y_spl)) ;

    p = inf(order+1,1) ; s = inf ; ds = 1 ; dp = 1 ;

    X = repmat(x_spl,1,order+1).^[order:-1:0] ;
    c = 4.685 ; nb_iter = 0 ;

    while (abs(ds) >= opts.TolFun) || (abs(dp) >= opts.TolX)

        if nb_iter > opts.MaxIter
            break
        end

        nb_iter = nb_iter+1 ;

        old_p = p ;
        p = (sqrt(weights).*X)\(sqrt(weights).*y_spl) ;
    
        y_spl_calc = X*p ;
        r = y_spl_calc-y_spl ;
        tau = median(abs(r-median(r)))/0.6745 ;
        if tau == 0
            s = std(r)*sqrt(1+1/numel(y_spl)+(i-mean(x_spl)).^2/sum((x_spl-mean(x_spl)).^2)) ;
            break
        end
        z = r/tau ;
        weights = (abs(z)<c).*(1-(z/c).^2).^2 ;
        weights = weights.*(weights>=0) ; 
        old_s = s ;
        s = std(r,weights)*sqrt(1+1/numel(y_spl)+(i-sum(weights.*x_spl)./sum(weights)).^2/sum((x_spl-sum(weights.*x_spl)./sum(weights)).^2)) ;
        dp = max((old_p-p)./p) ;
        ds = (old_s-s)/s ;

    end

    y3(i,:) = p' ;
    y2(i,1) = s ;
    y1(i,1) = polyval(p,i) ;
 
end

if y_input_type == "row"
    y1 = y1' ;
    y2 = y2' ;
    x3 = y3' ;
    y_input = y_input' ;
    x_interp = 1:step:N ;
    x_query = 1:N ;
else
    x_interp = [1:step:N]' ;
    x_query = [1:N]' ;
end

if step == 1
    % No need for interpolation.
    return
end

y1 = interp1(x_interp,y1(1:step:N),x_query,opts.Interpolation,"extrap") ;
y2 = interp1(x_interp,y2(1:step:N),x_query,opts.Interpolation,"extrap") ;
y3 = interp1(x_interp,y3(1:step:N,:),x_query,opts.Interpolation,"extrap") ;
复制代码
  工学博士,担任《Mechanical System and Signal Processing》《中国电机工程学报》《控制与决策》等期刊审稿专家,擅长领域:现代信号处理,机器学习,深度学习,数字孪生,时间序列分析,设备缺陷检测、设备异常检测、设备智能故障诊断与健康管理PHM等。

  代码通过知乎学术咨询获得:https://www.zhihu.com/consult/people/792359672131756032?isMe=1
相关推荐
风逸hhh12 分钟前
python打卡day25@浙大疏锦行
开发语言·python
刚入门的大一新生16 分钟前
C++初阶-string类的模拟实现与改进
开发语言·c++
CM莫问16 分钟前
<论文>(微软)避免推荐域外物品:基于LLM的受限生成式推荐
人工智能·算法·大模型·推荐算法·受限生成
康谋自动驾驶1 小时前
康谋分享 | 自动驾驶仿真进入“标准时代”:aiSim全面对接ASAM OpenX
人工智能·科技·算法·机器学习·自动驾驶·汽车
chxii2 小时前
5java集合框架
java·开发语言
老衲有点帅2 小时前
C#多线程Thread
开发语言·c#
C++ 老炮儿的技术栈2 小时前
什么是函数重载?为什么 C 不支持函数重载,而 C++能支持函数重载?
c语言·开发语言·c++·qt·算法
IsPrisoner2 小时前
Go语言安装proto并且使用gRPC服务(2025最新WINDOWS系统)
开发语言·后端·golang
Python私教2 小时前
征服Rust:从零到独立开发的实战进阶
服务器·开发语言·rust