均匀采样信号的鲁棒Savistky-Golay滤波(MATLAB)

S-G滤波器又称S-G卷积平滑器,它是一种特殊的低通滤波器,用来平滑噪声数据。该滤波器被广泛地运用于信号去噪,采用在时域内基于多项式最小二乘法及窗口移动实现最佳拟合的方法。与通常的滤波器要经过时域-频域-时域变换不同,S-G滤波直接处理时域数据进行平滑,其平滑效果随窗口宽度不同而不同。相对于均值平滑滤波,S-G滤波更能保留相对极大值、极小值和宽度等分布特征。该滤波算法的另一优点是其运算量相对较小,对计算机的内存及数据处理能力要求较低。鉴于此,采用一种鲁棒Savistky-Golay滤波器对均匀采样信号进行降噪平滑,运行环境MATLAB 2021。

for i = 1:step:N

    ind1 = max(1,i-half_window) ;
    ind2 = min(N,i+half_window) ;
    y_spl = y_input(ind1:ind2) ;
    x_spl = [ind1:ind2]' ;

    weights = ones(size(y_spl)) ;

    p = inf(order+1,1) ; s = inf ; ds = 1 ; dp = 1 ;

    X = repmat(x_spl,1,order+1).^[order:-1:0] ;
    c = 4.685 ; nb_iter = 0 ;

    while (abs(ds) >= opts.TolFun) || (abs(dp) >= opts.TolX)

        if nb_iter > opts.MaxIter
            break
        end

        nb_iter = nb_iter+1 ;

        old_p = p ;
        p = (sqrt(weights).*X)\(sqrt(weights).*y_spl) ;
    
        y_spl_calc = X*p ;
        r = y_spl_calc-y_spl ;
        tau = median(abs(r-median(r)))/0.6745 ;
        if tau == 0
            s = std(r)*sqrt(1+1/numel(y_spl)+(i-mean(x_spl)).^2/sum((x_spl-mean(x_spl)).^2)) ;
            break
        end
        z = r/tau ;
        weights = (abs(z)<c).*(1-(z/c).^2).^2 ;
        weights = weights.*(weights>=0) ; 
        old_s = s ;
        s = std(r,weights)*sqrt(1+1/numel(y_spl)+(i-sum(weights.*x_spl)./sum(weights)).^2/sum((x_spl-sum(weights.*x_spl)./sum(weights)).^2)) ;
        dp = max((old_p-p)./p) ;
        ds = (old_s-s)/s ;

    end

    y3(i,:) = p' ;
    y2(i,1) = s ;
    y1(i,1) = polyval(p,i) ;
 
end

if y_input_type == "row"
    y1 = y1' ;
    y2 = y2' ;
    x3 = y3' ;
    y_input = y_input' ;
    x_interp = 1:step:N ;
    x_query = 1:N ;
else
    x_interp = [1:step:N]' ;
    x_query = [1:N]' ;
end

if step == 1
    % No need for interpolation.
    return
end

y1 = interp1(x_interp,y1(1:step:N),x_query,opts.Interpolation,"extrap") ;
y2 = interp1(x_interp,y2(1:step:N),x_query,opts.Interpolation,"extrap") ;
y3 = interp1(x_interp,y3(1:step:N,:),x_query,opts.Interpolation,"extrap") ;
  工学博士,担任《Mechanical System and Signal Processing》《中国电机工程学报》《控制与决策》等期刊审稿专家,擅长领域:现代信号处理,机器学习,深度学习,数字孪生,时间序列分析,设备缺陷检测、设备异常检测、设备智能故障诊断与健康管理PHM等。

  代码通过知乎学术咨询获得:https://www.zhihu.com/consult/people/792359672131756032?isMe=1
相关推荐
这个男人是小帅25 分钟前
【GAT】 代码详解 (1) 运行方法【pytorch】可运行版本
人工智能·pytorch·python·深度学习·分类
Qter_Sean27 分钟前
自己动手写Qt Creator插件
开发语言·qt
__基本操作__27 分钟前
边缘提取函数 [OPENCV--2]
人工智能·opencv·计算机视觉
何曾参静谧31 分钟前
「QT」文件类 之 QIODevice 输入输出设备类
开发语言·qt
Doctor老王31 分钟前
TR3:Pytorch复现Transformer
人工智能·pytorch·transformer
热爱生活的五柒32 分钟前
pytorch中数据和模型都要部署在cuda上面
人工智能·pytorch·深度学习
爱吃生蚝的于勒2 小时前
C语言内存函数
c语言·开发语言·数据结构·c++·学习·算法
HyperAI超神经2 小时前
【TVM 教程】使用 Tensorize 来利用硬件内联函数
人工智能·深度学习·自然语言处理·tvm·计算机技术·编程开发·编译框架
小白学大数据3 小时前
Python爬虫开发中的分析与方案制定
开发语言·c++·爬虫·python
扫地的小何尚4 小时前
NVIDIA RTX 系统上使用 llama.cpp 加速 LLM
人工智能·aigc·llama·gpu·nvidia·cuda·英伟达