昇思25天学习打卡营第25天 | RNN情感分类

内容介绍:

情感分类是自然语言处理中的经典任务,是典型的分类问题。本节使用MindSpore实现一个基于RNN网络的情感分类模型,实现如下的效果:

复制代码
输入: This film is terrible
正确标签: Negative
预测标签: Negative

输入: This film is great
正确标签: Positive
预测标签: Positive

具体内容:

  1. 导包
python 复制代码
import os
import shutil
import requests
import tempfile
from tqdm import tqdm
from typing import IO
from pathlib import Path
import re
import six
import string
import tarfile
import mindspore.dataset as ds
import zipfile
import numpy as np
import mindspore as ms
import math
import mindspore as ms
import mindspore.nn as nn
import mindspore.ops as ops
from mindspore.common.initializer import Uniform, HeUniform
  1. 数据下载
python 复制代码
# 指定保存路径为 `home_path/.mindspore_examples`
cache_dir = Path.home() / '.mindspore_examples'

def http_get(url: str, temp_file: IO):
    """使用requests库下载数据,并使用tqdm库进行流程可视化"""
    req = requests.get(url, stream=True)
    content_length = req.headers.get('Content-Length')
    total = int(content_length) if content_length is not None else None
    progress = tqdm(unit='B', total=total)
    for chunk in req.iter_content(chunk_size=1024):
        if chunk:
            progress.update(len(chunk))
            temp_file.write(chunk)
    progress.close()

def download(file_name: str, url: str):
    """下载数据并存为指定名称"""
    if not os.path.exists(cache_dir):
        os.makedirs(cache_dir)
    cache_path = os.path.join(cache_dir, file_name)
    cache_exist = os.path.exists(cache_path)
    if not cache_exist:
        with tempfile.NamedTemporaryFile() as temp_file:
            http_get(url, temp_file)
            temp_file.flush()
            temp_file.seek(0)
            with open(cache_path, 'wb') as cache_file:
                shutil.copyfileobj(temp_file, cache_file)
    return cache_path
python 复制代码
imdb_path = download('aclImdb_v1.tar.gz', 'https://mindspore-website.obs.myhuaweicloud.com/notebook/datasets/aclImdb_v1.tar.gz')
imdb_path
  1. 数据集加载
python 复制代码
class IMDBData():
    """IMDB数据集加载器

    加载IMDB数据集并处理为一个Python迭代对象。

    """
    label_map = {
        "pos": 1,
        "neg": 0
    }
    def __init__(self, path, mode="train"):
        self.mode = mode
        self.path = path
        self.docs, self.labels = [], []

        self._load("pos")
        self._load("neg")

    def _load(self, label):
        pattern = re.compile(r"aclImdb/{}/{}/.*\.txt$".format(self.mode, label))
        # 将数据加载至内存
        with tarfile.open(self.path) as tarf:
            tf = tarf.next()
            while tf is not None:
                if bool(pattern.match(tf.name)):
                    # 对文本进行分词、去除标点和特殊字符、小写处理
                    self.docs.append(str(tarf.extractfile(tf).read().rstrip(six.b("\n\r"))
                                         .translate(None, six.b(string.punctuation)).lower()).split())
                    self.labels.append([self.label_map[label]])
                tf = tarf.next()

    def __getitem__(self, idx):
        return self.docs[idx], self.labels[idx]

    def __len__(self):
        return len(self.docs)
python 复制代码
imdb_train = IMDBData(imdb_path, 'train')
len(imdb_train)
python 复制代码
def load_imdb(imdb_path):
    imdb_train = ds.GeneratorDataset(IMDBData(imdb_path, "train"), column_names=["text", "label"], shuffle=True, num_samples=10000)
    imdb_test = ds.GeneratorDataset(IMDBData(imdb_path, "test"), column_names=["text", "label"], shuffle=False)
    return imdb_train, imdb_test
python 复制代码
imdb_train, imdb_test = load_imdb(imdb_path)
imdb_train
  1. 加载预训练词向量
python 复制代码
def load_glove(glove_path):
    glove_100d_path = os.path.join(cache_dir, 'glove.6B.100d.txt')
    if not os.path.exists(glove_100d_path):
        glove_zip = zipfile.ZipFile(glove_path)
        glove_zip.extractall(cache_dir)

    embeddings = []
    tokens = []
    with open(glove_100d_path, encoding='utf-8') as gf:
        for glove in gf:
            word, embedding = glove.split(maxsplit=1)
            tokens.append(word)
            embeddings.append(np.fromstring(embedding, dtype=np.float32, sep=' '))
    # 添加 <unk>, <pad> 两个特殊占位符对应的embedding
    embeddings.append(np.random.rand(100))
    embeddings.append(np.zeros((100,), np.float32))

    vocab = ds.text.Vocab.from_list(tokens, special_tokens=["<unk>", "<pad>"], special_first=False)
    embeddings = np.array(embeddings).astype(np.float32)
    return vocab, embeddings
  1. 下载Glove
python 复制代码
glove_path = download('glove.6B.zip', 'https://mindspore-website.obs.myhuaweicloud.com/notebook/datasets/glove.6B.zip')
vocab, embeddings = load_glove(glove_path)
len(vocab.vocab())
python 复制代码
idx = vocab.tokens_to_ids('the')
embedding = embeddings[idx]
idx, embedding
  1. 数据预处理
python 复制代码
lookup_op = ds.text.Lookup(vocab, unknown_token='<unk>')
pad_op = ds.transforms.PadEnd([500], pad_value=vocab.tokens_to_ids('<pad>'))
type_cast_op = ds.transforms.TypeCast(ms.float32)
python 复制代码
imdb_train = imdb_train.map(operations=[lookup_op, pad_op], input_columns=['text'])
imdb_train = imdb_train.map(operations=[type_cast_op], input_columns=['label'])

imdb_test = imdb_test.map(operations=[lookup_op, pad_op], input_columns=['text'])
imdb_test = imdb_test.map(operations=[type_cast_op], input_columns=['label'])
python 复制代码
imdb_train, imdb_valid = imdb_train.split([0.7, 0.3])
python 复制代码
imdb_train = imdb_train.batch(64, drop_remainder=True)
imdb_valid = imdb_valid.batch(64, drop_remainder=True)
  1. 模型构建
python 复制代码
class RNN(nn.Cell):
    def __init__(self, embeddings, hidden_dim, output_dim, n_layers,
                 bidirectional, pad_idx):
        super().__init__()
        vocab_size, embedding_dim = embeddings.shape
        self.embedding = nn.Embedding(vocab_size, embedding_dim, embedding_table=ms.Tensor(embeddings), padding_idx=pad_idx)
        self.rnn = nn.LSTM(embedding_dim,
                           hidden_dim,
                           num_layers=n_layers,
                           bidirectional=bidirectional,
                           batch_first=True)
        weight_init = HeUniform(math.sqrt(5))
        bias_init = Uniform(1 / math.sqrt(hidden_dim * 2))
        self.fc = nn.Dense(hidden_dim * 2, output_dim, weight_init=weight_init, bias_init=bias_init)

    def construct(self, inputs):
        embedded = self.embedding(inputs)
        _, (hidden, _) = self.rnn(embedded)
        hidden = ops.concat((hidden[-2, :, :], hidden[-1, :, :]), axis=1)
        output = self.fc(hidden)
        return output
  1. 损失函数和优化器
python 复制代码
hidden_size = 256
output_size = 1
num_layers = 2
bidirectional = True
lr = 0.001
pad_idx = vocab.tokens_to_ids('<pad>')

model = RNN(embeddings, hidden_size, output_size, num_layers, bidirectional, pad_idx)
loss_fn = nn.BCEWithLogitsLoss(reduction='mean')
optimizer = nn.Adam(model.trainable_params(), learning_rate=lr)
  1. 训练过程
python 复制代码
def forward_fn(data, label):
    logits = model(data)
    loss = loss_fn(logits, label)
    return loss

grad_fn = ms.value_and_grad(forward_fn, None, optimizer.parameters)

def train_step(data, label):
    loss, grads = grad_fn(data, label)
    optimizer(grads)
    return loss

def train_one_epoch(model, train_dataset, epoch=0):
    model.set_train()
    total = train_dataset.get_dataset_size()
    loss_total = 0
    step_total = 0
    with tqdm(total=total) as t:
        t.set_description('Epoch %i' % epoch)
        for i in train_dataset.create_tuple_iterator():
            loss = train_step(*i)
            loss_total += loss.asnumpy()
            step_total += 1
            t.set_postfix(loss=loss_total/step_total)
            t.update(1)
  1. 评估指标
python 复制代码
def binary_accuracy(preds, y):
    """
    计算每个batch的准确率
    """

    # 对预测值进行四舍五入
    rounded_preds = np.around(ops.sigmoid(preds).asnumpy())
    correct = (rounded_preds == y).astype(np.float32)
    acc = correct.sum() / len(correct)
    return acc
python 复制代码
def evaluate(model, test_dataset, criterion, epoch=0):
    total = test_dataset.get_dataset_size()
    epoch_loss = 0
    epoch_acc = 0
    step_total = 0
    model.set_train(False)

    with tqdm(total=total) as t:
        t.set_description('Epoch %i' % epoch)
        for i in test_dataset.create_tuple_iterator():
            predictions = model(i[0])
            loss = criterion(predictions, i[1])
            epoch_loss += loss.asnumpy()

            acc = binary_accuracy(predictions, i[1])
            epoch_acc += acc

            step_total += 1
            t.set_postfix(loss=epoch_loss/step_total, acc=epoch_acc/step_total)
            t.update(1)

    return epoch_loss / total
  1. 模型训练与保存
python 复制代码
num_epochs = 2
best_valid_loss = float('inf')
ckpt_file_name = os.path.join(cache_dir, 'sentiment-analysis.ckpt')

for epoch in range(num_epochs):
    train_one_epoch(model, imdb_train, epoch)
    valid_loss = evaluate(model, imdb_valid, loss_fn, epoch)

    if valid_loss < best_valid_loss:
        best_valid_loss = valid_loss
        ms.save_checkpoint(model, ckpt_file_name)

我对RNN的基本原理,如时间步的展开、状态传递、梯度消失与爆炸等问题有了更加深入的理解,还掌握了如何通过门控机制(如LSTM、GRU)来优化这些问题。MindSpore的API设计清晰直观,使得从理论到实践的转换变得顺畅无比,我能够迅速地将理论知识应用于构建具体的模型,如文本生成、情感分析或时间序列预测等任务中。、

相关推荐
THMAIL6 分钟前
量化股票从贫穷到财务自由之路 - 零基础搭建Python量化环境:Anaconda、Jupyter实战指南
linux·人工智能·python·深度学习·机器学习·金融
~-~%%8 分钟前
从PyTorch到ONNX:模型部署性能提升
人工智能·pytorch·python
xcnn_9 分钟前
深度学习基础概念回顾(Pytorch架构)
人工智能·pytorch·深度学习
attitude.x14 分钟前
PyTorch 动态图的灵活性与实用技巧
前端·人工智能·深度学习
骥龙1 小时前
XX汽集团数字化转型:全生命周期网络安全、数据合规与AI工业物联网融合实践
人工智能·物联网·web安全
zskj_qcxjqr1 小时前
告别传统繁琐!七彩喜艾灸机器人:一键开启智能养生新时代
大数据·人工智能·科技·机器人
Ven%1 小时前
第一章 神经网络的复习
人工智能·深度学习·神经网络
wanzhong23331 小时前
ArcGIS学习-20 实战-地形研究
学习
研梦非凡1 小时前
CVPR 2025|基于视觉语言模型的零样本3D视觉定位
人工智能·深度学习·计算机视觉·3d·ai·语言模型·自然语言处理
wanzhong23331 小时前
ArcGIS学习-20 实战-县域水文分析
学习·arcgis