Datawhale 2024 年 AI 夏令营第二期——基于术语词典干预的机器翻译挑战赛

#AI夏令营 #Datawhale #夏令营

1.赛事简介

目前神经机器翻译技术已经取得了很大的突破,但在特定领域或行业中,由于机器翻译难以保证术语的一致性,导致翻译效果还不够理想。对于术语名词、人名地名等机器翻译不准确的结果,可以通过术语词典进行纠正,避免了混淆或歧义,最大限度提高翻译质量。

2.赛事任务

基于术语词典干预的机器翻译挑战赛选择以英文为源语言,中文为目标语言的机器翻译。本次大赛除英文到中文的双语数据,还提供英中对照的术语词典。参赛队伍需要基于提供的训练数据样本从多语言机器翻译模型的构建与训练,并基于测试集以及术语词典,提供最终的翻译结果,数据包括:

·训练集:双语数据:中英14万余双语句对

·开发集:英中1000双语句对

·测试集:英中1000双语句对

·术语词典:英中2226条

3.baseline

(1)对中英双语句对进行分词:

复制代码
import nltk
import jieba
def read_file(filepath):
    with open(filepath, 'r', encoding='utf-8') as file:
        lines = file.readlines()
    return lines

# 分词英语文本
def tokenize_en(lines):
    return [' '.join(nltk.word_tokenize(line)) for line in lines]

# 分词中文文本
def tokenize_zh(lines):
    return [' '.join(jieba.cut(line)) for line in lines]

(2)统计句长分布

train_en.tok

train_zh.tok

句长普遍较短,且中英句长分布有区别。

(3)filter

利用分词后的语料训练源语言和目标语言的语言模型,打分后删除低分语句。

(4)训练

相关推荐
珠海西格电力科技30 分钟前
微电网控制策略基础:集中式、分布式与混合式控制逻辑
网络·人工智能·分布式·物联网·智慧城市·能源
Java后端的Ai之路1 小时前
【RAG技术】- RAG系统调优手段之高效召回(通俗易懂附案例)
人工智能·rag·rag系统·召回·rag调优
草莓熊Lotso1 小时前
Linux 基础 IO 初步解析:从 C 库函数到系统调用,理解文件操作本质
linux·运维·服务器·c语言·数据库·c++·人工智能
Cx330❀1 小时前
从零实现Shell命令行解释器:原理与实战(附源码)
大数据·linux·数据库·人工智能·科技·elasticsearch·搜索引擎
Niuguangshuo8 小时前
深入解析Stable Diffusion基石——潜在扩散模型(LDMs)
人工智能·计算机视觉·stable diffusion
迈火8 小时前
SD - Latent - Interposer:解锁Stable Diffusion潜在空间的创意工具
人工智能·gpt·计算机视觉·stable diffusion·aigc·语音识别·midjourney
wfeqhfxz25887828 小时前
YOLO13-C3k2-GhostDynamicConv烟雾检测算法实现与优化
人工智能·算法·计算机视觉
芝士爱知识a8 小时前
2026年AI面试软件推荐
人工智能·面试·职场和发展·大模型·ai教育·考公·智蛙面试
Li emily9 小时前
解决港股实时行情数据 API 接入难题
人工智能·python·fastapi
Aaron15889 小时前
基于RFSOC的数字射频存储技术应用分析
c语言·人工智能·驱动开发·算法·fpga开发·硬件工程·信号处理