【游戏/社交】BFS算法评价用户核心程度or人群扩量(基于SparkGraphX)

【游戏/社交】BFS算法评价用户核心程度or人群扩量(基于SparkGraphX)

在游戏和社交网络领域,评估用户的核心程度或进行人群扩量是提升用户粘性和拓展社交圈的关键。广度优先搜索(BFS)算法以其在图结构中评估节点重要性的能力,为这一目标提供了一种有效的技术手段。本文将详细探讨一种运用BFS算法来评价用户的核心程度,并探索其在人群扩量策略中的应用潜力的方案。

文章目录


一、问题背景

在游戏和社交网络行业中,识别并培养核心用户群体对于增强用户粘性和推动社区发展至关重要。为了进一步扩大影响力并吸引更多用户参与,基于这些核心用户进行有效的外扩和评估是必不可少的策略。在这一过程中,我们希望建立一种机制,能够根据用户与核心用户之间的关联紧密程度来动态地分配分值,且这些分值随着用户与核心用户层级的增加而递减。

具体而言,我们设想的模型是,每向外扩展一层用户关系,相应用户的分值就减少0.1。这种分值的递减趋势直观地反映了用户与核心群体的关联紧密度。为了实现这一目标,我们考虑采用图论中的广度优先搜索(BFS)算法,这是一种在图结构中探索节点和评估节点重要性的有力工具。

在实际应用中,我们可以通过分析用户之间的多种关联关系,如同设备登录、同IP登录或互相点赞等行为,构建一个复杂的用户关系图。在这个图中,每个用户都是一个节点,而他们之间的关联则构成了边。利用BFS算法,我们可以从核心用户开始,逐层向外扩展,直至覆盖整个用户网络。

鉴于数据量可能达到千万级别,传统的单机算法显然无法满足处理需求。因此,我们计划借助于Apache Spark的图计算框架Spark GraphX来实现这一算法。Spark GraphX是一个专为大规模图处理而设计的分布式图处理系统,它能够高效地处理大规模图数据,并提供丰富的图计算操作。

二、实现代码

假设:核心用户分值为1.0

点属性包括两个,分别是点分值和,所处层级,默认核心用户所属层级为0
SparkGraphX实现BFS代码(基于Scala)


总结

相关推荐
派大星爱吃猫5 分钟前
快速排序和交换排序详解(含三路划分)
算法·排序算法·快速排序·三路划分
焜昱错眩..11 分钟前
代码随想录第四十八天|1143.最长公共子序列 1035.不相交的线 53. 最大子序和 392.判断子序列
算法·动态规划
AI妈妈手把手39 分钟前
YOLO V2全面解析:更快、更准、更强大的目标检测算法
人工智能·算法·yolo·目标检测·计算机视觉·yolo v2
极客智造42 分钟前
编程世界的内在逻辑:深入探索数据结构、算法复杂度与抽象数据类型
数据结构·算法·数学建模
好好学习啊天天向上1 小时前
多维c++ vector, vector<pair<int,int>>, vector<vector<pair<int,int>>>示例
开发语言·c++·算法
MicroTech20251 小时前
MLGO微算法科技 LOP算法:实现多用户无线传感系统中边缘协同AI推理的智能优化路径
人工智能·科技·算法
Greedy Alg1 小时前
Leetcode 279. 完全平方数
算法
剪一朵云爱着1 小时前
力扣410. 分割数组的最大值
算法·leetcode
Swift社区2 小时前
LeetCode 410 - 分割数组的最大值
算法·leetcode·职场和发展
ゞ 正在缓冲99%…2 小时前
leetcode375.猜数字大小II
数据结构·算法·leetcode·动态规划