PyTorch 深度学习实践-卷积神经网络基础篇

视频指路
参考博客笔记
参考笔记二

文章目录

上课笔记

如果一个网络全都是由线性层串联起来(torch.nn.Linear(xx, yy)),就叫他全连接的网络(左边节点到右边节点任意两个都存在权重)

先看一下吴恩达或者李宏毅老师的视频了解一下卷积

通过卷积层保留图像的空间特征(结构)

张量的维度是(b, c, w, h) batch, channel, width, height

经过5 * 5的卷积层变成一个4 * 24 * 24的特征图,经过2*2的下采样(减少元素数量,降低运算需求)变成4 * 12 * 12的特征图,再做5 * 5 的卷积, 2 * 2的下采样,变成8 * 4 * 4的特征图(前面是特征提取层),展开成1维向量,最后线性变换映射成10维的输出,用softmax计算分布(分类器)

必须知道输入输出的尺寸

卷积的例子:

通道内的每个位置和卷积核的同一位置进行内积,计算后的尺寸大小为原来的长宽-卷积核长宽+1,最后把所有通道计算的结果进行加法得到输出。

卷积核通道数 = 卷积输入层的通道数;卷积输出层通道数 = 卷积核(组)的个数。

m个卷积核进行运算后将结果拼接,输出尺寸为m * w * h

w权重的维度为: m * n * w * h

默认情况下缩小的圈数为卷积核大小/2向下取整,比如(1,28,28)进行5 * 5卷积后是(1, 24, 24) 5 / 2 = 2 缩小两圈等于宽高-4

padding:在输入图像外面周围进行填充0,如果对于3*3的卷积核想让输入输出大小相同设置padding=1,如果对于5 * 5的卷积核想让输入输出大小相同设置padding=2

stride步长,每次滑动的长度

Stride的作用:是成倍缩小尺寸,而这个参数的值就是缩小的具体倍数,比如步幅为2,输出就是输入的1/2;步幅为3,输出就是输入的1/3

下采样:常用的max pooling,最大池化层,运算后通道数量不变,如果是2 * 2的maxpooling,输出尺寸变原来的一半:torch.nn.MaxPool2d(kernel

_size=2)

python 复制代码
class Net(torch.nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = torch.nn.Conv2d(1, 10, kernel_size=5)
        self.conv2 = torch.nn.Conv2d(10, 20, kernel_size=5)
        self.pooling = torch.nn.MaxPool2d(2)
        self.fc = torch.nn.Linear(320, 10)
 
 
    def forward(self, x):
        # flatten data from (n,1,28,28) to (n, 784)
        batch_size = x.size(0)
        x = F.relu(self.pooling(self.conv1(x)))
        x = F.relu(self.pooling(self.conv2(x)))
        x = x.view(batch_size, -1) # view()函数用来转换size大小。x = x.view(batchsize, -1)中batchsize指转换后有几行,而-1指根据原tensor数据和batchsize自动分配列数。 -1 此处自动算出的是x平摊的元素值/batch_size=320
        x = self.fc(x)#用交叉熵损失所以最后一层不用激活
 
        return x
 
 
model = Net()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)

代码实现

1、torch.nn.Conv2d(1,10,kernel_size=3,stride=2,bias=False)

1是指输入的Channel,灰色图像是1维的;10是指输出的Channel,也可以说第一个卷积层需要10个卷积核;kernel_size=3,卷积核大小是3x3;stride=2进行卷积运算时的步长,默认为1;bias=False卷积运算是否需要偏置bias,默认为False。padding = 0,卷积操作是否补0。

2、self.fc = torch.nn.Linear(320, 10),这个320获取的方式,可以通过x = x.view(batch_size, -1) # print(x.shape)可得到(64,320),64指的是batch,320就是指要进行全连接操作时,输入的特征维度。

python 复制代码
import torch
from torchvision import transforms
from torchvision import datasets
from torch.utils.data import DataLoader
import torch.nn.functional as F
import torch.optim as optim
 
# prepare dataset
 
batch_size = 64
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])
 
train_dataset = datasets.MNIST(root='../dataset/mnist/', train=True, download=True, transform=transform)
train_loader = DataLoader(train_dataset, shuffle=True, batch_size=batch_size)
test_dataset = datasets.MNIST(root='../dataset/mnist/', train=False, download=True, transform=transform)
test_loader = DataLoader(test_dataset, shuffle=False, batch_size=batch_size)
 
# design model using class
 
 
class Net(torch.nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = torch.nn.Conv2d(1, 10, kernel_size=5)
        self.conv2 = torch.nn.Conv2d(10, 20, kernel_size=5)
        self.pooling = torch.nn.MaxPool2d(2)
        self.fc = torch.nn.Linear(320, 10)
 
 
    def forward(self, x):
        # flatten data from (n,1,28,28) to (n, 784)
        batch_size = x.size(0)
        x = F.relu(self.pooling(self.conv1(x)))
        x = F.relu(self.pooling(self.conv2(x)))
        x = x.view(batch_size, -1) # -1 此处自动算出的是320
        x = self.fc(x)
 
        return x
 
 
model = Net()
 
# construct loss and optimizer
criterion = torch.nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5)
 
# training cycle forward, backward, update
 
 
def train(epoch):
    running_loss = 0.0
    for batch_idx, data in enumerate(train_loader, 0):
        inputs, target = data
        inputs, target = inputs.to(device), target.to(device)
        optimizer.zero_grad()
 
        outputs = model(inputs)
        loss = criterion(outputs, target)
        loss.backward()
        optimizer.step()
 
        running_loss += loss.item()
        if batch_idx % 300 == 299:
            print('[%d, %5d] loss: %.3f' % (epoch+1, batch_idx+1, running_loss/300))
            running_loss = 0.0
 
 
def test():
    correct = 0
    total = 0
    with torch.no_grad():
        for data in test_loader:
            images, labels = data
            outputs = model(images)
            _, predicted = torch.max(outputs.data, dim=1)
            total += labels.size(0)
            correct += (predicted == labels).sum().item()
    print('accuracy on test set: %d %% ' % (100*correct/total))
 
 
if __name__ == '__main__':
    for epoch in range(10):
        train(epoch)
        test()

显卡计算

1:model后面迁移至gpu

python 复制代码
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model.to(device)

2:训练和测试的输入输出数据也迁移至gpu

python 复制代码
inputs, target = inputs.to(device), target.to(device)

作业实现

卷积层用三个,relu三个,池化三个,线性层三个,对比性能

input(batch, 1, 28, 28) -> conv2d -> relu -> pooling -> conv2d -> relu -> pooling -> conv2d -> relu -> pooling -> linear layer -> linear -> output(batch, 10)

(batch, 1, 28, 28) ->卷积(1, 10, 5)->(10, 24, 24) ->下采样2->(10, 12, 12)->卷积(10, 20, 5)->(20, 8, 8)->下采样2->(20, 4, 4)->卷积(20, 10, 5, padding=2) ->(10, 4 ,4)->下采样(10,2,2)摊平view(batch_size, -1)->l1(40, 32)->l2(32, 16)->l3(16, 10)

(10,12,12)-》(20,6, 6)-》(10, 3, 3)

python 复制代码
import torch
from torchvision import transforms
from torchvision import datasets
from torch.utils.data import DataLoader
import matplotlib.pyplot as plt
import torch.nn.functional as F

# 1.数据集准备
batch_size = 64
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])
train_dataset = datasets.MNIST(root='../dataset/minist/', train=True, download=True, transform=transform)
train_loader = DataLoader(train_dataset, shuffle=True, batch_size=batch_size, num_workers=2)
test_dataset = datasets.MNIST(root='../dataset/minist/', train=False, download=True, transform=transform)
test_loader = DataLoader(test_dataset, shuffle=False, batch_size=batch_size, num_workers=2)


# 2.模型构建
class CNNNet2(torch.nn.Module):
    def __init__(self):
        super(CNNNet2, self).__init__()
        self.cov1 = torch.nn.Conv2d(1, 10,5)
        self.cov2 = torch.nn.Conv2d(10, 20,5)
        self.cov3 = torch.nn.Conv2d(20, 10, 3, padding=1)
        self.pool = torch.nn.MaxPool2d(2)
        self.l1 = torch.nn.Linear(40, 32)
        self.l2 = torch.nn.Linear(32, 16)
        self.l3 = torch.nn.Linear(16, 10)

    def forward(self, x):
        batch_size = x.size(0) # B,C,W,H(之前的transform已经将图像转为tensor张量了,取第一个维度就是batch)
        x = self.pool(torch.relu(self.cov1(x)))
        x = self.pool(torch.relu(self.cov2(x)))
        x = self.pool(torch.relu(self.cov3(x)))
        x = x.view(batch_size, -1)  # batch是不变的,把CWH拉长
        x = torch.relu(self.l1(x))
        x = torch.relu(self.l2(x))
        return self.l3(x)
class Net(torch.nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = torch.nn.Conv2d(1, 10, kernel_size=5)
        self.conv2 = torch.nn.Conv2d(10, 20, kernel_size=5)
        self.pooling = torch.nn.MaxPool2d(2)
        self.fc = torch.nn.Linear(320, 10)

    def forward(self, x):
        # flatten data from (n,1,28,28) to (n, 784)
        batch_size = x.size(0)
        x = F.relu(self.pooling(self.conv1(x)))
        x = F.relu(self.pooling(self.conv2(x)))
        x = x.view(batch_size, -1)  # -1 此处自动算出的是320
        x = self.fc(x)

        return x


model1 = Net()
device = torch.device('cuda'if torch.cuda.is_available() else 'cpu')
model1.to(device)

model2 = CNNNet2()
model2.to(device)

# 3.损失值和优化器
criterion = torch.nn.CrossEntropyLoss()
optimizer1 = torch.optim.SGD(model1.parameters(), lr=0.01, momentum=0.5)
optimizer2 = torch.optim.SGD(model2.parameters(), lr=0.01, momentum=0.5)

# 4.训练循环
def train(epoch):
    l1 = 0.0
    l2 = 0.0
    for batch_index, (x, y) in enumerate(train_loader):
        x, y = x.to(device), y.to(device)
        y_pred1 = model1(x)
        optimizer1.zero_grad()
        loss1 = criterion(y_pred1, y)
        l1 += loss1.item()
        loss1.backward()
        optimizer1.step()

        y_pred2 = model2(x)
        optimizer2.zero_grad()
        loss2 = criterion(y_pred2, y)
        l2 += loss2.item()
        loss2.backward()
        optimizer2.step()

        if batch_index % 300 == 299:
            print(f'[epoch{epoch+1}---------batch={batch_index+1}---------loss1={round(100*l1/300, 3)}]')
            l1 = 0.0 # 输出完记得置为0
            print(f'[epoch{epoch + 1}---------batch={batch_index + 1}---------loss2={round(100 * l2 / 300, 3)}]')
            l2 = 0.0  # 输出完记得置为0

def test():
    size = 0
    acc1 = 0
    acc2 = 0
    with torch.no_grad():
        for (x, y) in test_loader:
            x, y = x.to(device), y.to(device)
            y_pred1 = model1(x)
            _, predict1 = torch.max(y_pred1.data, dim=1)  # 0列1行,注意这里取的是data(用到张量的时候要格外小心)
            size += predict1.size(0)
            acc1 += (predict1 == y).sum().item()  # 与标签进行比较
    print('test accuracy1= %.3f %%' % (100 * acc1 / size))

    size = 0
    with torch.no_grad():
        for (x, y) in test_loader:
            x, y = x.to(device), y.to(device)
            y_pred2 = model2(x)
            _, predict2 = torch.max(y_pred2.data, dim=1)  # 0列1行,注意这里取的是data(用到张量的时候要格外小心)
            size += predict2.size(0)
            acc2 += (predict2 == y).sum().item()  # 与标签进行比较
    print('test accuracy2= %.3f %%' % (100 * acc2 / size))
    return (acc1 / size, acc2 / size)


if __name__ == "__main__":
    epoch_list = []
    acc_list1 = []
    acc_list2 = []
    for epoch in range(10):
        train(epoch)
        acc1, acc2 = test()
        epoch_list.append(epoch)
        acc_list1.append(acc1)
        acc_list2.append(acc2)
    plt.plot(epoch_list, acc_list1)
    plt.plot(epoch_list, acc_list2)
    plt.ylabel('accuracy')
    plt.xlabel('epoch')
    plt.show()
相关推荐
明明真系叻37 分钟前
第二十六周机器学习笔记:PINN求正反解求PDE文献阅读——正问题
人工智能·笔记·深度学习·机器学习·1024程序员节
XianxinMao1 小时前
Transformer 架构对比:Dense、MoE 与 Hybrid-MoE 的优劣分析
深度学习·架构·transformer
HyperAI超神经3 小时前
未来具身智能的触觉革命!TactEdge传感器让机器人具备精细触觉感知,实现织物缺陷检测、灵巧操作控制
人工智能·深度学习·机器人·触觉传感器·中国地质大学·机器人智能感知·具身触觉
请站在我身后4 小时前
复现Qwen-Audio 千问
人工智能·深度学习·语言模型·语音识别
love you joyfully4 小时前
目标检测与R-CNN——paddle部分
人工智能·目标检测·cnn·paddle
GISer_Jing5 小时前
神经网络初学总结(一)
人工智能·深度学习·神经网络
数据分析能量站6 小时前
神经网络-AlexNet
人工智能·深度学习·神经网络
Ven%6 小时前
如何修改pip全局缓存位置和全局安装包存放路径
人工智能·python·深度学习·缓存·自然语言处理·pip
YangJZ_ByteMaster7 小时前
EndtoEnd Object Detection with Transformers
人工智能·深度学习·目标检测·计算机视觉
volcanical8 小时前
Bert各种变体——RoBERTA/ALBERT/DistillBert
人工智能·深度学习·bert