第五十天 第十一章:图论part01 图论理论基础 深搜理论基础 98. 所有可达路径 广搜理论基础

图论理论基础

了解邻接矩阵(*),度,邻接表(数组+链表)等 遍历顺序:深搜加广搜

深搜理论基础

dfs是可一个方向去搜,不到黄河不回头,直到遇到绝境了,搜不下去了,再换方向(换方向的过程就涉及到了回溯)。

void dfs(参数) {
    if (终止条件) {
        存放结果;
        return;
    }

    for (选择:本节点所连接的其他节点) {
        处理节点;
        dfs(图,选择的节点); // 递归
        回溯,撤销处理结果
    }
}

98. 所有可达路径

注意图的输入形式,这里图用二维数组graph[s][t]表示,其中s,t表示s,t两点之间是否相连,相连赋值为1,不然为0。

后面深搜的方法和回溯三部曲几乎一样。

#include<iostream>
#include<vector>
using namespace std;

vector<vector<int>> res;
vector<int> path;

void dfs(const vector<vector<int>> &graph , int m ,int n){
    if(m==n){
       res.push_back(path); 
       return ;
    }
    
    for(int i=1;i<=n;i++){
        if(graph[m][i]==1){
            path.push_back(i);
            dfs(graph,i,n);
            path.pop_back();
        }
    }
}

int main(){
    int N,M,s,t;
    cin>>N>>M;
    vector<vector<int>> graph(N + 1,vector<int>(N + 1,0));
    while(M--){
       cin>>s>>t;
       graph[s][t]=1;
    }
    path.push_back(1);
    dfs(graph,1,N);
    if (res.size() == 0) cout << -1 << endl;
    for (const vector<int> &pa : res) {
        for(int i=0;i<pa.size()-1;i++){
         cout<<pa[i]<<" ";
        }
        cout<<pa[pa.size()-1]<<endl;
    }
 
    return 0;
}

广搜理论基础

bfs是先把本节点所连接的所有节点遍历一遍,走到下一个节点的时候,再把连接节点的所有节点遍历一遍,搜索方向更像是广度,四面八方的搜索过程。

int dir[4][2] = {0, 1, 1, 0, -1, 0, 0, -1}; // 表示四个方向
// grid 是地图,也就是一个二维数组
// visited标记访问过的节点,不要重复访问
// x,y 表示开始搜索节点的下标
void bfs(vector<vector<char>>& grid, vector<vector<bool>>& visited, int x, int y) {
    queue<pair<int, int>> que; // 定义队列
    que.push({x, y}); // 起始节点加入队列
    visited[x][y] = true; // 只要加入队列,立刻标记为访问过的节点
    while(!que.empty()) { // 开始遍历队列里的元素
        pair<int ,int> cur = que.front(); que.pop(); // 从队列取元素
        int curx = cur.first;
        int cury = cur.second; // 当前节点坐标
        for (int i = 0; i < 4; i++) { // 开始想当前节点的四个方向左右上下去遍历
            int nextx = curx + dir[i][0];
            int nexty = cury + dir[i][1]; // 获取周边四个方向的坐标
            if (nextx < 0 || nextx >= grid.size() || nexty < 0 || nexty >= grid[0].size()) continue;  // 坐标越界了,直接跳过
            if (!visited[nextx][nexty]) { // 如果节点没被访问过
                que.push({nextx, nexty});  // 队列添加该节点为下一轮要遍历的节点
                visited[nextx][nexty] = true; // 只要加入队列立刻标记,避免重复访问
            }
        }
    }

}
相关推荐
不去幼儿园13 分钟前
【MARL】深入理解多智能体近端策略优化(MAPPO)算法与调参
人工智能·python·算法·机器学习·强化学习
Mr_Xuhhh15 分钟前
重生之我在学环境变量
linux·运维·服务器·前端·chrome·算法
盼海1 小时前
排序算法(五)--归并排序
数据结构·算法·排序算法
网易独家音乐人Mike Zhou5 小时前
【卡尔曼滤波】数据预测Prediction观测器的理论推导及应用 C语言、Python实现(Kalman Filter)
c语言·python·单片机·物联网·算法·嵌入式·iot
搬砖的小码农_Sky7 小时前
C语言:数组
c语言·数据结构
Swift社区8 小时前
LeetCode - #139 单词拆分
算法·leetcode·职场和发展
Kent_J_Truman9 小时前
greater<>() 、less<>()及运算符 < 重载在排序和堆中的使用
算法
先鱼鲨生9 小时前
数据结构——栈、队列
数据结构
一念之坤9 小时前
零基础学Python之数据结构 -- 01篇
数据结构·python
IT 青年9 小时前
数据结构 (1)基本概念和术语
数据结构·算法