机器学习算法与Python实战 | 两行代码即可应用 40 个机器学习模型--lazypredict 库!

本文来源公众号**"机器学习算法与Python实战"**,仅用于学术分享,侵权删,干货满满。

原文链接:两行代码即可应用 40 个机器学习模型

今天和大家一起学习使用**lazypredict 库**,我们可以用一行代码在我们的数据集上实现许多 ML 模型,这样我们就可以简要了解哪些模型适合我们的数据集。

第1步

使用以下方法安装 lazypredict 库:

复制代码
pip install lazypredict

第2步

导入 pandas 来加载我们的数据集。

复制代码
import pandas as pd

第3步

加载数据集。

复制代码
df = pd.read_csv('Mal_Customers.csv')

第4步

打印数据集的前几行

这里 Y 变量是支出分数列,而其余列是 X 变量。

现在,在确定了 X 和 Y 变量之后,我们将它们分成训练和测试数据集。

复制代码
# 导入 train_test_split,用于分割数据集
from sklearn.model_selection import train_test_split
# 定义 X 和 y 变量
X = df.loc[:, df.columns != 'Spending Score (1-100)']
y = df['Spending Score (1-100)'] # 对数据进行分区。
# 分割数据
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)

第5步

我们导入之前安装的lazypredict库,lazypredict里面有两个类,一个用于分类,一个用于回归。

复制代码
# 导入 lazypredict
导入 lazypredict
# 从 lazypredict 导入回归类
from lazypredict.Supervised import LazyRegressor
# 从 lazypredict.Supervised 中导入分类类
from lazypredict.Supervised import LazyClassifier

导入后,我们将使用 LazyRegressor,因为我们正在处理回归问题,如果你正在处理分类问题,则这两种类型的问题都需要相同的步骤。

复制代码
# 使用 LazyRegressor 定义模型
multiple_ML_model = lazyRegressor(verbose=0, ignore_warnings=True, predictions=True)
# 对模型进行拟合,同时预测每个模型的输出结果
models, predictions = multiple_ML_model.fit(X_train, X_test, y_train, y_test)

这里,prediction = True 表示你想要获得每个模型的准确性并想要每个模型的预测值。

模型的变量包含每个模型精度以及一些其他重要信息。

它在我的回归问题上实现了**42 个 ML 模型,**因为本指南更侧重于如何测试许多模型,而不是提高其准确性。所以我对每个模型的准确性不感兴趣。

查看每个模型的预测。

你可以利用这些预测来创建一个混淆矩阵。

如果正在处理分类问题,这就是使用 lazypredict 库的方法。

复制代码
# 使用 LazyRegressor 定义模型
multiple_ML_model = lazyClassifier(verbose=0,
          ignore_warnings=True,
          predictions=True)
# 对模型进行拟合,并预测每个模型的输出结果
models, predictions = multiple_ML_model.fit(
          X_train, X_test, y_train, y_test)

要记住的要点:

  1. 这个库仅用于测试目的,为提供有关哪种模型在您的数据集上表现良好的信息。

  2. 建议使用conda单独建立一个虚拟环境,因为它提供了一个单独的环境,避免与其他环境有版本冲突。

THE END !

文章结束,感谢阅读。您的点赞,收藏,评论是我继续更新的动力。大家有推荐的公众号可以评论区留言,共同学习,一起进步。

相关推荐
向左转, 向右走ˉ7 分钟前
层归一化(LayerNorm)与Batch归一化(BatchNorm):从原理到实践的深度对比
人工智能·深度学习·机器学习·分类
睿思达DBA_WGX11 分钟前
Python 程序设计讲义(36):字符串的处理方法——去除字符串头尾字符:strip() 方法、lstrip() 方法与rstrip() 方法
开发语言·python
Spider_Man17 分钟前
栈中藏玄机:从温度到雨水,单调栈的逆袭之路
javascript·算法·leetcode
007tg23 分钟前
007TG洞察:波场TRON上市观察,Web3流量工具的技术解析与应用
大数据·人工智能·产品运营·web3·职场发展·技术洞察·品牌运营
A呏枡昇25 分钟前
Trae Plus 让没有编程基础的女朋友也用上了 AI Coding
人工智能
whaosoft-14326 分钟前
51c~GPU合集2
人工智能
硅谷秋水30 分钟前
DyWA:用于可推广的非抓握操作的动态自适应世界动作模型
人工智能·深度学习·机器学习·语言模型·机器人
阿蒙Amon30 分钟前
详解Python标准库之互联网数据处理
网络·数据库·python
淦暴尼31 分钟前
每日五个pyecharts可视化图表-bars(1)
python·信息可视化·echarts
lxmyzzs43 分钟前
【打怪升级 - 07】基于 YOLO12 的车辆与人员数量统计系统:从理论到代码实战,零基础实现你的第一个深度学习应用
人工智能·深度学习·yolo·目标检测·计算机视觉