计算机的错误计算(四十九)

摘要 计算机的错误计算(四十八)讨论了GPU下一个深度学习中的"Hello World"程序的计算精度问题。本节探讨扩展后的程序在GPU下的计算精度问题。具体扩展为:首先归一化"Hello World"程序的结果矩阵Y,然后对其应用Tanh激活函数,最后与新生成的矩阵Z进行第二次矩阵乘法。结果表明,该扩展后的程序的误差也大为"扩展"。

先看代码:

python 复制代码
import torch

# 设置随机种子
torch.manual_seed(0)

# 创建张量并移动到GPU
W = torch.randn(5, 3) * 10
W = W.to('cuda')
X = torch.randn(3, 5) * 10
X = X.to('cuda')

# 计算矩阵乘法
Y = torch.mm(W, X)

# 在GPU上执行归一化操作
min_val = Y.min()
max_val = Y.max()
Y_normalized = (Y - min_val) / (max_val - min_val)

# 应用tanh函数
torch_tanh = torch.tanh(Y_normalized)

# 创建另一个张量并移动到GPU
Z = torch.randn(5, 4) * 10
Z = Z.to('cuda')

# 计算矩阵乘法
R_tanh = torch.mm(torch_tanh, Z)

# 设置小数位数
torch.set_printoptions(precision=8)

# 输出
print(R_tanh)

然后是输出:

在上面的输出中,有 2个值包含 3位错误数字,8个值包含 2位错误数字。这10个值的正确结果是:

其中红颜色数字表明 Python对应位置的数字不正确。因此,错误率不小于 2/8=25%的占比达到 10/20=50%. 它是计算机的错误计算(四十三)中CPU下错误率占比的 2倍。

相关推荐
walnut_oyb6 分钟前
arXiv|SARLANG-1M:用于 SAR 图像理解的视觉-语言建模基准
论文阅读·人工智能·机器学习·计算机视觉·语言模型·自然语言处理
brave and determined7 分钟前
可编程逻辑器件学习(day29):Verilog HDL可综合代码设计规范与实践指南
深度学习·fpga开发·verilog·fpga·设计规范·硬件编程·嵌入式设计
GOTXX11 分钟前
CANN特性能力深度解析:释放AI计算潜能
人工智能
___波子 Pro Max.18 分钟前
Python类型注解详解与应用
python
jinxinyuuuus25 分钟前
Info Flow:分布式信息采集、数据去重与内容分级的工程实现
人工智能·分布式·程序人生·生活
1***Q78429 分钟前
Python增强现实案例
开发语言·python·ar
IT_陈寒29 分钟前
Spring Boot 3.2 性能翻倍秘诀:这5个配置优化让你的应用起飞🚀
前端·人工智能·后端
5***790031 分钟前
MCP在边缘计算中的应用场景
人工智能·边缘计算
Tezign_space34 分钟前
技术破局:人机协作如何重构内容生产流水线,实现成本与效能的范式转移
人工智能·重构·降本增效·人机协作·内容数字化·内容科技·内容+人工智能
小毅&Nora42 分钟前
【人工智能】人工智能发展历程全景解析:从图灵测试到大模型时代(含CNN、Q-Learning深度实践)
人工智能·cnn·q-learning