计算机的错误计算(四十九)

摘要 计算机的错误计算(四十八)讨论了GPU下一个深度学习中的"Hello World"程序的计算精度问题。本节探讨扩展后的程序在GPU下的计算精度问题。具体扩展为:首先归一化"Hello World"程序的结果矩阵Y,然后对其应用Tanh激活函数,最后与新生成的矩阵Z进行第二次矩阵乘法。结果表明,该扩展后的程序的误差也大为"扩展"。

先看代码:

python 复制代码
import torch

# 设置随机种子
torch.manual_seed(0)

# 创建张量并移动到GPU
W = torch.randn(5, 3) * 10
W = W.to('cuda')
X = torch.randn(3, 5) * 10
X = X.to('cuda')

# 计算矩阵乘法
Y = torch.mm(W, X)

# 在GPU上执行归一化操作
min_val = Y.min()
max_val = Y.max()
Y_normalized = (Y - min_val) / (max_val - min_val)

# 应用tanh函数
torch_tanh = torch.tanh(Y_normalized)

# 创建另一个张量并移动到GPU
Z = torch.randn(5, 4) * 10
Z = Z.to('cuda')

# 计算矩阵乘法
R_tanh = torch.mm(torch_tanh, Z)

# 设置小数位数
torch.set_printoptions(precision=8)

# 输出
print(R_tanh)

然后是输出:

在上面的输出中,有 2个值包含 3位错误数字,8个值包含 2位错误数字。这10个值的正确结果是:

其中红颜色数字表明 Python对应位置的数字不正确。因此,错误率不小于 2/8=25%的占比达到 10/20=50%. 它是计算机的错误计算(四十三)中CPU下错误率占比的 2倍。

相关推荐
草莓熊Lotso5 分钟前
Linux 基础开发工具入门:软件包管理器的全方位实操指南
linux·运维·服务器·c++·人工智能·网络协议·rpc
机器学习之心8 分钟前
MATLAB遗传算法优化RVFL神经网络回归预测(随机函数链接神经网络)
神经网络·matlab·回归
IT_陈寒15 分钟前
Vue 3性能优化实战:7个关键技巧让我的应用加载速度提升50%
前端·人工智能·后端
【赫兹威客】浩哥18 分钟前
基于 YOLO11+PyQt6+OpenCV 的智能水果检测系统设计与实现
人工智能·opencv·计算机视觉
晚秋大魔王21 分钟前
基于python的jlink单片机自动化批量烧录工具
前端·python·单片机
胖哥真不错22 分钟前
Python基于PyTorch实现多输入多输出进行CNN卷积神经网络回归预测项目实战
pytorch·python·毕业设计·课程设计·毕设·多输入多输出·cnn卷积神经网络回归预测
RPA机器人就用八爪鱼23 分钟前
RPA:企业数字化转型的高效自动化利器
人工智能
程序员-小李24 分钟前
基于PyTorch的动物识别模型训练与应用实战
人工智能·pytorch·python
掘金安东尼29 分钟前
AI 生成代码,从 Copilot 到 Claude Code 的全景测评
人工智能
说私域35 分钟前
基于开源链动2+1模式AI智能名片S2B2C商城小程序的赛道力构建与品牌发展研究
人工智能·小程序