计算机的错误计算(四十九)

摘要 计算机的错误计算(四十八)讨论了GPU下一个深度学习中的"Hello World"程序的计算精度问题。本节探讨扩展后的程序在GPU下的计算精度问题。具体扩展为:首先归一化"Hello World"程序的结果矩阵Y,然后对其应用Tanh激活函数,最后与新生成的矩阵Z进行第二次矩阵乘法。结果表明,该扩展后的程序的误差也大为"扩展"。

先看代码:

python 复制代码
import torch

# 设置随机种子
torch.manual_seed(0)

# 创建张量并移动到GPU
W = torch.randn(5, 3) * 10
W = W.to('cuda')
X = torch.randn(3, 5) * 10
X = X.to('cuda')

# 计算矩阵乘法
Y = torch.mm(W, X)

# 在GPU上执行归一化操作
min_val = Y.min()
max_val = Y.max()
Y_normalized = (Y - min_val) / (max_val - min_val)

# 应用tanh函数
torch_tanh = torch.tanh(Y_normalized)

# 创建另一个张量并移动到GPU
Z = torch.randn(5, 4) * 10
Z = Z.to('cuda')

# 计算矩阵乘法
R_tanh = torch.mm(torch_tanh, Z)

# 设置小数位数
torch.set_printoptions(precision=8)

# 输出
print(R_tanh)

然后是输出:

在上面的输出中,有 2个值包含 3位错误数字,8个值包含 2位错误数字。这10个值的正确结果是:

其中红颜色数字表明 Python对应位置的数字不正确。因此,错误率不小于 2/8=25%的占比达到 10/20=50%. 它是计算机的错误计算(四十三)中CPU下错误率占比的 2倍。

相关推荐
The_Ticker10 分钟前
CFD平台如何接入实时行情源
java·大数据·数据库·人工智能·算法·区块链·软件工程
Elastic 中国社区官方博客17 分钟前
Elasticsearch 开放推理 API 增加了对 IBM watsonx.ai Slate 嵌入模型的支持
大数据·数据库·人工智能·elasticsearch·搜索引擎·ai·全文检索
jwolf217 分钟前
摸一下elasticsearch8的AI能力:语义搜索/vector向量搜索案例
人工智能·搜索引擎
有Li26 分钟前
跨视角差异-依赖网络用于体积医学图像分割|文献速递-生成式模型与transformer在医学影像中的应用
人工智能·计算机视觉
傻啦嘿哟29 分钟前
如何使用 Python 开发一个简单的文本数据转换为 Excel 工具
开发语言·python·excel
B站计算机毕业设计超人35 分钟前
计算机毕业设计SparkStreaming+Kafka旅游推荐系统 旅游景点客流量预测 旅游可视化 旅游大数据 Hive数据仓库 机器学习 深度学习
大数据·数据仓库·hadoop·python·kafka·课程设计·数据可视化
新加坡内哥谈技术1 小时前
Mistral推出“Le Chat”,对标ChatGPT
人工智能·chatgpt
GOTXX1 小时前
基于Opencv的图像处理软件
图像处理·人工智能·深度学习·opencv·卷积神经网络
IT古董1 小时前
【人工智能】Python在机器学习与人工智能中的应用
开发语言·人工智能·python·机器学习
CV学术叫叫兽1 小时前
快速图像识别:落叶植物叶片分类
人工智能·分类·数据挖掘