计算机的错误计算(五十)

摘要 扩展了计算机的错误计算(四十九)中的代码。同时发现,误差也"扩展"了。

下面是代码:

import torch

# 设置随机种子
torch.manual_seed(0)

# 创建张量并移动到GPU
W1 = torch.randn(5, 3) * 10
W1 = W1.to('cuda')
X1 = torch.randn(3, 5) * 10
X1 = X1.to('cuda')

# 计算第一个矩阵乘法
Y1 = torch.mm(W1, X1)

# 在GPU上执行归一化操作
min_val1 = Y1.min()
max_val1 = Y1.max()
Y1_normalized = (Y1 - min_val1) / (max_val1 - min_val1)

# 应用tanh函数
torch_tanh1 = torch.tanh(Y1_normalized)

# 创建第二个张量并移动到GPU
Z1 = torch.randn(5, 4) * 10
Z1 = Z1.to('cuda')

# 计算第二个矩阵乘法
R_tanh1 = torch.mm(torch_tanh1, Z1)

# 继续构建更多层
W2 = torch.randn(4, 6) * 10
W2 = W2.to('cuda')
X2 = torch.randn(6, 4) * 10
X2 = X2.to('cuda')

# 计算第三个矩阵乘法
Y2 = torch.mm(W2, X2)

# 在GPU上执行归一化操作
min_val2 = Y2.min()
max_val2 = Y2.max()
Y2_normalized = (Y2 - min_val2) / (max_val2 - min_val2)

# 应用tanh函数
torch_tanh2 = torch.tanh(Y2_normalized)

# 创建另一个张量并移动到GPU
Z2 = torch.randn(4, 7) * 10
Z2 = Z2.to('cuda')

# 计算第四个矩阵乘法
R_tanh2 = torch.mm(torch_tanh2, Z2)

输出为:

经检验,矩阵R_tanh2中,含有两位错误数字的元素共有15个,具体位置如下:[0,0]、[0,1]、[0,3]、[0,4]、[0,5]、[1,0]、[2,1]、[2,2]、[2,3]、[2,4]、[2,5]、[3,1]、[3,2]、[3,5]、[3,6]。另外,含有三位错误数字的元素有2个,分别是[3,0]和[3,3]。

这样,含有两位以上错误数字的元素共有17个。占比为 17/(4*7)=17/28=60.7%.

现在有个问题:随着代码的增加,误差是否会越来越大?会大到有的元素没有了正确有效数字吗?误差有上限吗?

相关推荐
Ronin-Lotus1 分钟前
程序代码篇---C/C++中的变量存储位置
c语言·c++···静态区·文字常量区·变量存储位置
可为测控2 分钟前
图像处理基础(3):均值滤波器及其变种
图像处理·人工智能·均值算法
刘立军7 分钟前
本地大模型编程实战(20)用langgraph和智能体实现RAG(Retrieval Augmented Generation,检索增强生成)(4)
人工智能·后端·llm
程序媛-徐师姐10 分钟前
基于 Python Django 的校园互助平台(附源码,文档)
开发语言·python·django·校园互助·校园互助平台
Abdullah al-Sa26 分钟前
Docker教程(喂饭级!)
c++·人工智能·docker·容器
进击的_鹏28 分钟前
【C++】list 链表的使用+模拟实现
开发语言·c++·链表
神经星星30 分钟前
无机材料逆合成效率飙升,韩国团队推出Retrieval-Retro,成果入选NeurIPS 2024
人工智能·深度学习·机器学习
大数据追光猿34 分钟前
【深度学习】Pytorch项目实战-基于协同过滤实现物品推荐系统
人工智能·pytorch·python·深度学习·ai编程·推荐算法
师范大学生42 分钟前
基于CNN的FashionMNIST数据集识别2——模型训练
python·深度学习·cnn
CodeJourney.43 分钟前
EndNote与Word关联:科研写作的高效助力
数据库·人工智能·算法·架构