计算机的错误计算(五十)

摘要 扩展了计算机的错误计算(四十九)中的代码。同时发现,误差也"扩展"了。

下面是代码:

复制代码
import torch

# 设置随机种子
torch.manual_seed(0)

# 创建张量并移动到GPU
W1 = torch.randn(5, 3) * 10
W1 = W1.to('cuda')
X1 = torch.randn(3, 5) * 10
X1 = X1.to('cuda')

# 计算第一个矩阵乘法
Y1 = torch.mm(W1, X1)

# 在GPU上执行归一化操作
min_val1 = Y1.min()
max_val1 = Y1.max()
Y1_normalized = (Y1 - min_val1) / (max_val1 - min_val1)

# 应用tanh函数
torch_tanh1 = torch.tanh(Y1_normalized)

# 创建第二个张量并移动到GPU
Z1 = torch.randn(5, 4) * 10
Z1 = Z1.to('cuda')

# 计算第二个矩阵乘法
R_tanh1 = torch.mm(torch_tanh1, Z1)

# 继续构建更多层
W2 = torch.randn(4, 6) * 10
W2 = W2.to('cuda')
X2 = torch.randn(6, 4) * 10
X2 = X2.to('cuda')

# 计算第三个矩阵乘法
Y2 = torch.mm(W2, X2)

# 在GPU上执行归一化操作
min_val2 = Y2.min()
max_val2 = Y2.max()
Y2_normalized = (Y2 - min_val2) / (max_val2 - min_val2)

# 应用tanh函数
torch_tanh2 = torch.tanh(Y2_normalized)

# 创建另一个张量并移动到GPU
Z2 = torch.randn(4, 7) * 10
Z2 = Z2.to('cuda')

# 计算第四个矩阵乘法
R_tanh2 = torch.mm(torch_tanh2, Z2)

输出为:

经检验,矩阵R_tanh2中,含有两位错误数字的元素共有15个,具体位置如下:[0,0]、[0,1]、[0,3]、[0,4]、[0,5]、[1,0]、[2,1]、[2,2]、[2,3]、[2,4]、[2,5]、[3,1]、[3,2]、[3,5]、[3,6]。另外,含有三位错误数字的元素有2个,分别是[3,0]和[3,3]。

这样,含有两位以上错误数字的元素共有17个。占比为 17/(4*7)=17/28=60.7%.

现在有个问题:随着代码的增加,误差是否会越来越大?会大到有的元素没有了正确有效数字吗?误差有上限吗?

相关推荐
zhangrelay8 分钟前
如何使用AI快速编程实现标注ROS2中sensor_msgs/msg/Image图像色彩webots2025a
人工智能·笔记·opencv·学习·计算机视觉·机器人视觉
武子康11 分钟前
AI研究-120 DeepSeek-OCR 从 0 到 1:上手路线、实战要点
人工智能·深度学习·机器学习·ai·ocr·deepseek·deepseek-ocr
j_xxx404_13 分钟前
C++ STL:list|了解list|相关接口|相关操作
开发语言·c++
kyle~20 分钟前
机器视觉---Intel RealSense SDK 2.0 开发流程
运维·c++·windows·深度相机·intel realsense
萧鼎28 分钟前
深入掌握 OpenCV-Python:从图像处理到智能视觉
图像处理·python·opencv
海琴烟Sunshine31 分钟前
leetcode 190. 颠倒二进制位 python
python·算法·leetcode
大千AI助手35 分钟前
LIFT:基于低秩引导的稀疏微调
人工智能·神经网络·lora·大模型·lift·大千ai助手·稀疏微调
Serverless 社区36 分钟前
算力成本降低 33%,与光同尘用 Serverless AI 赋能影视商业内容生产
人工智能·云原生·serverless
脏脏a37 分钟前
类与对象(上):面向过程到面向对象的跨越,类的定义、封装与 this 指针等核心概念深度剖析
开发语言·c++
L.EscaRC38 分钟前
【AI基础篇】Transformer架构深度解析与前沿应用
人工智能·深度学习·transformer