大模型面试八股,Offer拿到手软

前言

在面试大模型相关岗位时,掌握一些常见的面试问题和准备相应的回答,也就是俗称的"面试八股",确实能帮助你更有信心地面对挑战,并可能提升你的面试成功率。

面试题笔记分享

为了助力朋友们跳槽面试、升职加薪、职业困境,提高自己的技术,本文给大家整了一套涵盖Android所有技术栈的快速学习方法和笔记。目前已经收到了七八个网友的反馈,说是面试问到了很多这里面的知识点。

每一章节都是站在企业考察思维出发,作为招聘者角度回答。从考察问题延展到考察知识点,再到如何优雅回答一面俱全,可以说是求职面试的必备宝典,每一部分都有上百页内容,接下来具体展示,完整版可直接下方扫码领取。

😝朋友们如果有需要的话,可以V扫描下方二维码联系领取~

大模型(LLMs)基础面

1.目前 主流的开源模型体系 有哪些?

2.prefix LM 和 causal LM 区别是什么?

3.涌现能力是啥原因?

4.大模型 LLM的架构介绍?

大模型(LLMs)进阶面

1.llama 输入句子长度理论上可以无限长吗?

2.什么是 LLMs 复读机问题?

3.为什么会出现 LLMs 复读机问题?

4.如何缓解 LLMs 复读机问题?

5.LLMs 复读机问题

6.lama 系列问题

7.什么情况用 Bert模型,什么情况用LLaMA、ChatGLM类大模型,咋选?8.各个专业领域是否需要各自的大模型来服务?

9.如何让大模型处理更长的文本?

大模型(LLMs)微调面

1.如果想要在某个模型基础上做全参数微调,究竟需要多少显存?

2.为什么 SFT之后感觉 LLM傻了?

3.SFT 指令微调数据 如何构建?

4.领域模型 Continue PreTrain 数据选取?5.领域数据训练后,通用能力往往会有所下降,如何缓解模型遗忘通用能力?

6.领域模型 Continue PreTrain ,如何 让模型在预训练过程中就学习到更多的知识?7.进行 SFT操作的时候,基座模型选用Chat还是 Base?

8.领域模型微调 指令&数据输入格式 要求?

9.领域模型微调 领域评测集 构建?

10.领域模型词表扩增是不是有必要的?

11.如何训练自己的大模型?

12.训练中文大模型有啥经验?

13.指令微调的好处?

14.预训练和微调哪个阶段注入知识的?15.想让模型学习某个领域或行业的知识,是

应该预训练还是应该微调?

16.多轮对话任务如何微调模型?

17.微调后的模型出现能力劣化,灾难性遗忘

是怎么回事?

大模型(LLMs)langchain面

1.基于 LLM+向量库的文档对话 基础面

2.基于 LLM+向量库的文档对话 优化面

3.LLMs 存在模型幻觉问题,请问如何处理?

4.基于 LLM+向量库的文档对话 思路是怎么样?

5.基于 LLM+向量库的文档对话 核心技术是什么?

6.基于 LLM+向量库的文档对话 prompt 模板如何构建?

7.痛点1:文档切分粒度不好把控,既担心噪声太多又担心语义信息丢失

2.痛点2:在基于垂直领域 表现不佳

3.痛点 3:langchain 内置 问答分句效果不佳问题

4.痛点 4:如何 尽可能召回与 query相关的Document 问题

5.痛点5:如何让 LLM基于 query和 context

得到高质量的response

6.什么是 LangChain?

7.LangChain 包含哪些 核心概念?

8.什么是 LangChain Agent?

9.如何使用 LangChain ?

10.LangChain 支持哪些功能?

11.什么是 LangChain model?

12.LangChain 包含哪些特点?

大模型(LLMs):参数高效微调(PEFT)面

1.LORA篇2.QLoRA篇

3.AdaLoRA篇

4.LORA权重是否可以合入原模型?

5.LORA 微调优点是什么?

6.LORA微调方法为啥能加速训练?

7.如何在已有 LORA模型上继续训练?

1.1 什么是 LORA?

1.2 LORA 的思路是什么?

1.3 LORA 的特点是什么?

2.1 QLORA 的思路是怎么样的?

2.2 QLORA 的特点是什么?

8.3.1 AdaLoRA 的思路是怎么样的?为什么需

要 提示学习(Prompting)?

9.什么是 提示学习(Prompting)?10.提示学习(Prompting)有什么优点?11.提示学习(Prompting)有哪些方法,能不能稍微介绍一下它们间?

4.4.1为什么需要 P-tuning v2?

4.4.2 P-tuning v2 思路是什么?

4.4.3 P-tuning v2 优点是什么?

4.4.4 P-tuning v2 缺点是什么?

4.3.1为什么需要 P-tuning?

。😝朋友们如果有需要的话,可以V扫描下方二维码联系领取~

相关推荐
蓦然回首却已人去楼空16 分钟前
Build a Large Language Model (From Scratch) 序章
人工智能·语言模型·自然语言处理
CM莫问19 分钟前
<论文>(微软)WINA:用于加速大语言模型推理的权重感知神经元激活
人工智能·算法·语言模型·自然语言处理·大模型·推理加速
拾忆-eleven21 分钟前
NLP学习路线图(二十六):自注意力机制
人工智能·深度学习
FreeBuf_23 分钟前
最新研究揭示云端大语言模型防护机制的成效与缺陷
网络·安全·语言模型
MYH5161 小时前
在NLP文本处理中,将字符映射到阿拉伯数字(构建词汇表vocab)的核心目的和意义
人工智能·深度学习·自然语言处理
要努力啊啊啊1 小时前
KV Cache:大语言模型推理加速的核心机制详解
人工智能·语言模型·自然语言处理
计信金边罗2 小时前
是否存在路径(FIFOBB算法)
算法·蓝桥杯·图论
MZWeiei2 小时前
KMP 算法中 next 数组的构建函数 get_next
算法·kmp
mzlogin3 小时前
DIY|Mac 搭建 ESP-IDF 开发环境及编译小智 AI
人工智能
归去_来兮3 小时前
知识图谱技术概述
大数据·人工智能·知识图谱