损失函数与反向传播

1.损失函数的作用

  • 计算实际输出和目标之间的差距
  • 为我们更新输出提供一定的依据(反向传播)

2.介绍几种官方文档中的损失函数

损失函数只能处理float类型的张量。

  • L1Loss (MAE):

    
python 复制代码
import torch
from torch.nn import L1Loss

inputs=torch.tensor([1,2,3],dtype=torch.float32)
targets=torch.tensor([1,2,5],dtype=torch.float32)

inputs=torch.reshape(inputs,(1,1,1,3))
targets=torch.reshape(targets,(1,1,1,3))

loss=L1Loss()
result=loss(inputs,targets)

print(result)
  • MSELoss:
python 复制代码
loss_mse=nn.MSELoss()
result_mse=loss_mse(inputs,targets)
  • CrossEntropyLoss:
    该Loss算法计算输入对数与目标对数之间的交叉熵损失,在训练 C 类分类问题时非常有用。
python 复制代码
x=torch.tensor([0.1,0.2,0.3])
y=torch.tensor([1])
x=torch.reshape(x,(1,3))
loss_cross=nn.CrossEntropyLoss()
result_cross=loss_cross(x,y)

3.在神经网络中使用Loss Function

python 复制代码
import torchvision
from torch import nn
from torch.nn import Sequential, Conv2d, MaxPool2d, Flatten, Linear
from torch.utils.data import DataLoader

dataset=torchvision.datasets.CIFAR10("data",train=False,transform=torchvision.transforms.ToTensor(),
                                     download=True)

#每个批次中加载的数据项数量
dataloader=DataLoader(dataset,batch_size=1)

class Tudui(nn.Module):
    def __init__(self):
        super(Tudui, self).__init__()

        self.model1=Sequential(
            Conv2d(3,32,5,padding=2),
            MaxPool2d(2),
            Conv2d(32,32,5,padding=2),
            MaxPool2d(2),
            Conv2d(32,64,5,padding=2),
            MaxPool2d(2),
            Flatten(),
            Linear(1024,64),
            Linear(64,10)
        )

    def forward(self, x):
        x=self.model1(x)
        return x

loss=nn.CrossEntropyLoss()
tudui=Tudui()
for data in dataloader:
    imgs,targets = data
    outputs =tudui(imgs)
    result_loss=loss(outputs,targets)
    print(result_loss)

4.grad梯度

result_loss.backward()

python 复制代码
loss=nn.CrossEntropyLoss()
tudui=Tudui()
for data in dataloader:
    imgs,targets = data
    outputs =tudui(imgs)
    result_loss=loss(outputs,targets)
    result_loss.backward()
    print("ok")

Debug

python 复制代码
优化器就是根据grad中的值进行优化loss
相关推荐
浩哥的技术博客29 分钟前
使用MetaGPT 创建智能体(1)入门
人工智能·大模型·智能体
不惑_1 小时前
基于HAI应用,从零开始的NLP处理实践指南
人工智能
OreoCC2 小时前
第R3周:RNN-心脏病预测(pytorch版)
人工智能·pytorch·rnn
说私域2 小时前
基于开源链动 2+1 模式 AI 智能名片 S2B2C 商城小程序的社群团购品牌命名策略研究
人工智能·小程序·开源·零售
森叶2 小时前
免费Deepseek-v3接口实现Browser-Use Web UI:浏览器自动化本地模拟抓取数据实录
前端·人工智能·自动化
訾博ZiBo2 小时前
AI日报 - 2025年4月9日
人工智能
云卷云舒___________2 小时前
✅ Ultralytics YOLO验证(Val)时自动输出COCO指标(AP):2025最新配置与代码详解 (小白友好 + B站视频)
人工智能·yolo·模型评估·指标·ultralytics·coco api·pycocotools
油泼辣子多加3 小时前
【NLP】Transformer网络结构(2)
人工智能·自然语言处理·transformer