损失函数与反向传播

1.损失函数的作用

  • 计算实际输出和目标之间的差距
  • 为我们更新输出提供一定的依据(反向传播)

2.介绍几种官方文档中的损失函数

损失函数只能处理float类型的张量。

  • L1Loss (MAE):

    
python 复制代码
import torch
from torch.nn import L1Loss

inputs=torch.tensor([1,2,3],dtype=torch.float32)
targets=torch.tensor([1,2,5],dtype=torch.float32)

inputs=torch.reshape(inputs,(1,1,1,3))
targets=torch.reshape(targets,(1,1,1,3))

loss=L1Loss()
result=loss(inputs,targets)

print(result)
  • MSELoss:
python 复制代码
loss_mse=nn.MSELoss()
result_mse=loss_mse(inputs,targets)
  • CrossEntropyLoss:
    该Loss算法计算输入对数与目标对数之间的交叉熵损失,在训练 C 类分类问题时非常有用。
python 复制代码
x=torch.tensor([0.1,0.2,0.3])
y=torch.tensor([1])
x=torch.reshape(x,(1,3))
loss_cross=nn.CrossEntropyLoss()
result_cross=loss_cross(x,y)

3.在神经网络中使用Loss Function

python 复制代码
import torchvision
from torch import nn
from torch.nn import Sequential, Conv2d, MaxPool2d, Flatten, Linear
from torch.utils.data import DataLoader

dataset=torchvision.datasets.CIFAR10("data",train=False,transform=torchvision.transforms.ToTensor(),
                                     download=True)

#每个批次中加载的数据项数量
dataloader=DataLoader(dataset,batch_size=1)

class Tudui(nn.Module):
    def __init__(self):
        super(Tudui, self).__init__()

        self.model1=Sequential(
            Conv2d(3,32,5,padding=2),
            MaxPool2d(2),
            Conv2d(32,32,5,padding=2),
            MaxPool2d(2),
            Conv2d(32,64,5,padding=2),
            MaxPool2d(2),
            Flatten(),
            Linear(1024,64),
            Linear(64,10)
        )

    def forward(self, x):
        x=self.model1(x)
        return x

loss=nn.CrossEntropyLoss()
tudui=Tudui()
for data in dataloader:
    imgs,targets = data
    outputs =tudui(imgs)
    result_loss=loss(outputs,targets)
    print(result_loss)

4.grad梯度

result_loss.backward()

python 复制代码
loss=nn.CrossEntropyLoss()
tudui=Tudui()
for data in dataloader:
    imgs,targets = data
    outputs =tudui(imgs)
    result_loss=loss(outputs,targets)
    result_loss.backward()
    print("ok")

Debug

python 复制代码
优化器就是根据grad中的值进行优化loss
相关推荐
Python×CATIA工业智造2 小时前
Frida RPC高级应用:动态模拟执行Android so文件实战指南
开发语言·python·pycharm
千宇宙航2 小时前
闲庭信步使用SV搭建图像测试平台:第三十一课——基于神经网络的手写数字识别
图像处理·人工智能·深度学习·神经网络·计算机视觉·fpga开发
onceco2 小时前
领域LLM九讲——第5讲 为什么选择OpenManus而不是QwenAgent(附LLM免费api邀请码)
人工智能·python·深度学习·语言模型·自然语言处理·自动化
天水幼麟3 小时前
动手学深度学习-学习笔记(总)
笔记·深度学习·学习
回家吃月饼5 小时前
pycharm2018配置gitee操作
pycharm·gitee
jndingxin5 小时前
OpenCV CUDA模块设备层-----高效地计算两个 uint 类型值的带权重平均值
人工智能·opencv·计算机视觉
天水幼麟5 小时前
动手学深度学习-学习笔记【二】(基础知识)
笔记·深度学习·学习
Sweet锦5 小时前
零基础保姆级本地化部署文心大模型4.5开源系列
人工智能·语言模型·文心一言
Naiva6 小时前
【小技巧】Python+PyCharm IDE 配置解释器出错,环境配置不完整或不兼容。(小智AI、MCP、聚合数据、实时新闻查询、NBA赛事查询)
ide·python·pycharm
hie988946 小时前
MATLAB锂离子电池伪二维(P2D)模型实现
人工智能·算法·matlab