损失函数与反向传播

1.损失函数的作用

  • 计算实际输出和目标之间的差距
  • 为我们更新输出提供一定的依据(反向传播)

2.介绍几种官方文档中的损失函数

损失函数只能处理float类型的张量。

  • L1Loss (MAE):

    
python 复制代码
import torch
from torch.nn import L1Loss

inputs=torch.tensor([1,2,3],dtype=torch.float32)
targets=torch.tensor([1,2,5],dtype=torch.float32)

inputs=torch.reshape(inputs,(1,1,1,3))
targets=torch.reshape(targets,(1,1,1,3))

loss=L1Loss()
result=loss(inputs,targets)

print(result)
  • MSELoss:
python 复制代码
loss_mse=nn.MSELoss()
result_mse=loss_mse(inputs,targets)
  • CrossEntropyLoss:
    该Loss算法计算输入对数与目标对数之间的交叉熵损失,在训练 C 类分类问题时非常有用。
python 复制代码
x=torch.tensor([0.1,0.2,0.3])
y=torch.tensor([1])
x=torch.reshape(x,(1,3))
loss_cross=nn.CrossEntropyLoss()
result_cross=loss_cross(x,y)

3.在神经网络中使用Loss Function

python 复制代码
import torchvision
from torch import nn
from torch.nn import Sequential, Conv2d, MaxPool2d, Flatten, Linear
from torch.utils.data import DataLoader

dataset=torchvision.datasets.CIFAR10("data",train=False,transform=torchvision.transforms.ToTensor(),
                                     download=True)

#每个批次中加载的数据项数量
dataloader=DataLoader(dataset,batch_size=1)

class Tudui(nn.Module):
    def __init__(self):
        super(Tudui, self).__init__()

        self.model1=Sequential(
            Conv2d(3,32,5,padding=2),
            MaxPool2d(2),
            Conv2d(32,32,5,padding=2),
            MaxPool2d(2),
            Conv2d(32,64,5,padding=2),
            MaxPool2d(2),
            Flatten(),
            Linear(1024,64),
            Linear(64,10)
        )

    def forward(self, x):
        x=self.model1(x)
        return x

loss=nn.CrossEntropyLoss()
tudui=Tudui()
for data in dataloader:
    imgs,targets = data
    outputs =tudui(imgs)
    result_loss=loss(outputs,targets)
    print(result_loss)

4.grad梯度

result_loss.backward()

python 复制代码
loss=nn.CrossEntropyLoss()
tudui=Tudui()
for data in dataloader:
    imgs,targets = data
    outputs =tudui(imgs)
    result_loss=loss(outputs,targets)
    result_loss.backward()
    print("ok")

Debug

python 复制代码
优化器就是根据grad中的值进行优化loss
相关推荐
算家计算19 分钟前
字节开源代码模型——Seed-Coder 本地部署教程,模型自驱动数据筛选,让每行代码都精准落位!
人工智能·开源
伪_装26 分钟前
大语言模型(LLM)面试问题集
人工智能·语言模型·自然语言处理
gs8014033 分钟前
Tavily 技术详解:为大模型提供实时搜索增强的利器
人工智能·rag
music&movie1 小时前
算法工程师认知水平要求总结
人工智能·算法
狂小虎1 小时前
亲测解决self.transform is not exist
python·深度学习
量子位1 小时前
苹果炮轰推理模型全是假思考!4 个游戏戳破神话,o3/DeepSeek 高难度全崩溃
人工智能·deepseek
黑鹿0221 小时前
机器学习基础(四) 决策树
人工智能·决策树·机器学习
Fxrain1 小时前
[深度学习]搭建开发平台及Tensor基础
人工智能·深度学习
szxinmai主板定制专家2 小时前
【飞腾AI加固服务器】全国产化飞腾+昇腾310+PCIe Switch的AI大模型服务器解决方案
运维·服务器·arm开发·人工智能·fpga开发
laocui12 小时前
Σ∆ 数字滤波
人工智能·算法