损失函数与反向传播

1.损失函数的作用

  • 计算实际输出和目标之间的差距
  • 为我们更新输出提供一定的依据(反向传播)

2.介绍几种官方文档中的损失函数

损失函数只能处理float类型的张量。

  • L1Loss (MAE):

    
python 复制代码
import torch
from torch.nn import L1Loss

inputs=torch.tensor([1,2,3],dtype=torch.float32)
targets=torch.tensor([1,2,5],dtype=torch.float32)

inputs=torch.reshape(inputs,(1,1,1,3))
targets=torch.reshape(targets,(1,1,1,3))

loss=L1Loss()
result=loss(inputs,targets)

print(result)
  • MSELoss:
python 复制代码
loss_mse=nn.MSELoss()
result_mse=loss_mse(inputs,targets)
  • CrossEntropyLoss:
    该Loss算法计算输入对数与目标对数之间的交叉熵损失,在训练 C 类分类问题时非常有用。
python 复制代码
x=torch.tensor([0.1,0.2,0.3])
y=torch.tensor([1])
x=torch.reshape(x,(1,3))
loss_cross=nn.CrossEntropyLoss()
result_cross=loss_cross(x,y)

3.在神经网络中使用Loss Function

python 复制代码
import torchvision
from torch import nn
from torch.nn import Sequential, Conv2d, MaxPool2d, Flatten, Linear
from torch.utils.data import DataLoader

dataset=torchvision.datasets.CIFAR10("data",train=False,transform=torchvision.transforms.ToTensor(),
                                     download=True)

#每个批次中加载的数据项数量
dataloader=DataLoader(dataset,batch_size=1)

class Tudui(nn.Module):
    def __init__(self):
        super(Tudui, self).__init__()

        self.model1=Sequential(
            Conv2d(3,32,5,padding=2),
            MaxPool2d(2),
            Conv2d(32,32,5,padding=2),
            MaxPool2d(2),
            Conv2d(32,64,5,padding=2),
            MaxPool2d(2),
            Flatten(),
            Linear(1024,64),
            Linear(64,10)
        )

    def forward(self, x):
        x=self.model1(x)
        return x

loss=nn.CrossEntropyLoss()
tudui=Tudui()
for data in dataloader:
    imgs,targets = data
    outputs =tudui(imgs)
    result_loss=loss(outputs,targets)
    print(result_loss)

4.grad梯度

result_loss.backward()

python 复制代码
loss=nn.CrossEntropyLoss()
tudui=Tudui()
for data in dataloader:
    imgs,targets = data
    outputs =tudui(imgs)
    result_loss=loss(outputs,targets)
    result_loss.backward()
    print("ok")

Debug

python 复制代码
优化器就是根据grad中的值进行优化loss
相关推荐
kyle~13 分钟前
计算机视觉---RealSense深度相机技术
人工智能·数码相机·计算机视觉·机器人·嵌入式·ros·传感器
碣石潇湘无限路1 小时前
【AI篇】当Transformer模型开始学习《孙子兵法》
人工智能·学习
看到我,请让我去学习1 小时前
OpenCV开发-初始概念
人工智能·opencv·计算机视觉
汀沿河1 小时前
8.1 prefix Tunning与Prompt Tunning模型微调方法
linux·运维·服务器·人工智能
陈敬雷-充电了么-CEO兼CTO1 小时前
大模型技术原理 - 基于Transformer的预训练语言模型
人工智能·深度学习·语言模型·自然语言处理·chatgpt·aigc·transformer
学术 学术 Fun1 小时前
✨ OpenAudio S1:影视级文本转语音与语音克隆Mac整合包
人工智能·语音识别
风铃喵游2 小时前
让大模型调用MCP服务变得超级简单
前端·人工智能
旷世奇才李先生2 小时前
Pillow 安装使用教程
深度学习·microsoft·pillow
booooooty2 小时前
基于Spring AI Alibaba的多智能体RAG应用
java·人工智能·spring·多智能体·rag·spring ai·ai alibaba
PyAIExplorer3 小时前
基于 OpenCV 的图像 ROI 切割实现
人工智能·opencv·计算机视觉