【扩散模型(十)】IP-Adapter 源码详解 4 - 训练细节、具体训了哪些层?

系列文章目录


文章目录


通过前面的系列文章,很清楚要训练的就是 image_proj_model(或者对于 plus 来说是 resampler) 和 adapter_modules 两块。

而 image_proj_model 这块比较简单,原码如下所示

python 复制代码
    # freeze parameters of models to save more memory
    unet.requires_grad_(False)
    vae.requires_grad_(False)
    text_encoder.requires_grad_(False)
    image_encoder.requires_grad_(False)
    
    #ip-adapter
    image_proj_model = ImageProjModel(
        cross_attention_dim=unet.config.cross_attention_dim,
        clip_embeddings_dim=image_encoder.config.projection_dim,
        clip_extra_context_tokens=4,
    )

adapter_modules 分为两类

  1. AttnProcessor 对应 self attention
  2. IPAttnProcessor 对应 cross attention

按理说 self attention 对应的 AttnProcessor 应该不会被训练,但是 training = True,便让人非常费解。

进一步查看 AttnProcessor2_0 和 IPAttnProcessor2_0 后,就清楚了,因为从 AttnProcessor2_0 的构造函数(init)中并没有参数,就算是 trianing = True 也并不影响训练,实际训练的模块还是 IPAttnProcessor2_0 构造函数中的 to_k_ip 和 to_v_ip 两层 linear!

python 复制代码
class AttnProcessor2_0(torch.nn.Module):
    r"""
    Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0).
    """

    def __init__(
        self,
        hidden_size=None,
        cross_attention_dim=None,
    ):
        super().__init__()
        if not hasattr(F, "scaled_dot_product_attention"):
            raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")

    def __call__(
...

class IPAttnProcessor2_0(torch.nn.Module):
    r"""
    Attention processor for IP-Adapater for PyTorch 2.0.
    Args:
        hidden_size (`int`):
            The hidden size of the attention layer.
        cross_attention_dim (`int`):
            The number of channels in the `encoder_hidden_states`.
        scale (`float`, defaults to 1.0):
            the weight scale of image prompt.
        num_tokens (`int`, defaults to 4 when do ip_adapter_plus it should be 16):
            The context length of the image features.
    """

    def __init__(self, hidden_size, cross_attention_dim=None, scale=1.0, num_tokens=4):
        super().__init__()

        if not hasattr(F, "scaled_dot_product_attention"):
            raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")

        self.hidden_size = hidden_size
        self.cross_attention_dim = cross_attention_dim
        self.scale = scale
        self.num_tokens = num_tokens

        self.to_k_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
        self.to_v_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)

    def __call__(

总结

  1. IP-Adapter 训的就是 image_proj_model(或者对于 plus 来说是 resampler) 和 adapter_modules 两块。
  2. 在 adapter_modules 中,实际只训了 IPAttnProcessor2_0 的 to_k_ip 和 to_v_ip。
  3. adapter_modules 是在每个有含有 cross attention 的 unet block 里进行的替换,如下图所示。
相关推荐
童话名剑23 分钟前
训练词嵌入(吴恩达深度学习笔记)
人工智能·深度学习·word2vec·词嵌入·负采样·嵌入矩阵·glove算法
桂花很香,旭很美1 小时前
智能体技术架构:从分类、选型到落地
人工智能·架构
AIGCmitutu2 小时前
Ps怎么把图片2D转3D?新手图文详细教程!
计算机视觉·photoshop·ps·美工
HelloWorld__来都来了2 小时前
2026.1.30 本周学术科研热点TOP5
人工智能·科研
aihuangwu2 小时前
豆包图表怎么导出
人工智能·ai·deepseek·ds随心转
YMWM_2 小时前
深度学习中模型的推理和训练
人工智能·深度学习
中二病码农不会遇见C++学姐3 小时前
文明6-mod制作-游戏素材AI生成记录
人工智能·游戏
九尾狐ai3 小时前
从九尾狐AI案例拆解企业AI培训的技术实现与降本增效架构
人工智能
2501_948120153 小时前
基于RFID技术的固定资产管理软件系统的设计与开发
人工智能·区块链
(; ̄ェ ̄)。3 小时前
机器学习入门(十五)集成学习,Bagging,Boosting,Voting,Stacking,随机森林,Adaboost
人工智能·机器学习·集成学习