PDF和CDF

在概率论和统计学中,PDF和CDF是两种描述随机变量分布的重要函数:

Probability Density Function (PDF):概率密度函数是用来描述连续随机变量可能取值的概率分布的函数。对于一个连续型随机变量X,其PDF f(x) 定义为在某个取值x处的概率密度,即 X 在该值附近出现的概率密度。PDF的积分可以得到概率,即在某个区间内随机变量出现的概率。

Cumulative Density Function (CDF):累积密度函数是一个用来描述随机变量的取值小于等于某个特定值的概率的函数。对于一个随机变量X,其CDF F(x) 定义为 X 小于等于某个值 x 的概率。CDF可以看作是对PDF的积分,因为它给出了在某个值及以下的概率。

总结:

PDF描述了连续型随机变量在某个值附近的概率密度分布。

CDF描述了随机变量小于等于某个值的累积概率。

这两个函数在概率论和统计学中经常被用来分析和描述随机变量的概率分布特性。

相关推荐
BlackPercy5 天前
【概率论】条件期望
概率论
高山莫衣10 天前
【差分隐私相关概念】瑞丽差分隐私(RDP)引理1
概率论·差分隐私
高山莫衣10 天前
【差分隐私相关概念】瑞丽差分隐私(RDP)命题4
概率论·差分隐私
高山莫衣10 天前
【差分隐私相关概念】瑞丽差分隐私(RDP)-命题1
概率论·差分隐私
蹦蹦跳跳真可爱58910 天前
Python----概率论与统计(随机变量,离散概率分布,连续概率分布,期望,方差,标准差,多维随机变量)
概率论
徐行tag12 天前
组合数学——二项式系数
线性代数·概率论
蹦蹦跳跳真可爱58916 天前
Python----概率论与统计(概率论,互斥事件和概率和,非互斥事件和概率和,独立性事件,生日问题,条件概率)
概率论
phoenix@Capricornus17 天前
条件概率、概率乘法公式、全概率公式和贝叶斯 (Bayes) 公式
概率论
jerry60918 天前
协方差相关问题
概率论
RedMery19 天前
多元高斯分布函数
线性代数·矩阵·概率论