Pytorch学习--DataLoader的使用

一、DataLoader简介

DataLoader官网

重要参数:画红框的参数

  • dataset:
    • 作用:表示要加载的数据集。DataLoader通过该参数从数据集中读取数据。
    • 类型:Dataset,即PyTorch定义的Dataset类,用于封装数据并提供数据索引的功能。
  • batch_size:
    • 作用:指定每次加载的数据样本数量(即每个批次的数据量)。默认值为1。
    • 类型:int(可选),默认为1。设置为大于1的值时,可以加速训练,因为数据将被批量处理。
  • shuffle:
    • 作用:是否在每个epoch结束后打乱数据顺序。如果设置为True,数据会在每个epoch重新随机排列。默认值是False,即数据不打乱。
    • 类型:bool(可选),是否打乱数据。
  • sampler:
    • 作用:定义从数据集中提取数据的策略。可以传入一个Sampler类的实例,自定义数据抽样的方式。注意,如果指定了sampler,则不能再使用shuffle。
    • 类型:Sampler或Iterable(可选),用于控制数据抽样。
  • batch_sampler:
    • 作用:与sampler类似,但batch_sampler返回的是一批次的索引,而不是单个样本索引。此参数与batch_size、shuffle和drop_last互斥,不能同时使用。
    • 类型:Sampler或Iterable(可选),专门用于批次索引的抽样。
  • num_workers:
    • 作用:指定用于数据加载的子进程数量。0表示在主进程中进行数据加载。较大的值可以加速数据加载,但需要在进程间共享数据。
    • 类型:int(可选),默认为0。
  • drop_last:
    • 作用:是否丢弃最后一个未满批次的数据。当数据集的大小不能整除batch_size时,最后一个批次的大小可能会小于batch_size。如果将drop_last设为True,则丢弃这个不完整的批次。
    • 类型:bool(可选),默认为False。

二、代码初识

python 复制代码
import torchvision.datasets
from torch.utils.data import DataLoader

train_data=torchvision.datasets.CIFAR10(root="datasets",train=False,transform=torchvision.transforms.ToTensor(),download=True)
train_loader=DataLoader(dataset=train_data,batch_size=4,shuffle=True)

img,target=train_data[0]
print(img.shape)
print(target)

for data in train_loader:
    imgs,targets=data
    print(imgs.shape)
    print(targets)

因为这里采取的是随机抽样

三、使用tensorboard可视化

python 复制代码
import torchvision.datasets
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

train_data=torchvision.datasets.CIFAR10(root="datasets",train=False,transform=torchvision.transforms.ToTensor(),download=True)
#shuffle会在epoch中表现出来
train_loader=DataLoader(dataset=train_data,batch_size=4,shuffle=True)


img,target=train_data[0]
writer=SummaryWriter("logs")

step=0

for epoch in range(2):
    for data in train_loader:
        imgs,targets=data
        #注意:这里是add_images,不是add_image
        writer.add_images("epoch{}".format(epoch),imgs,step)
        step+=1
writer.close()
相关推荐
盐焗西兰花5 分钟前
鸿蒙学习实战之路-Reader Kit修改翻页方式字体大小及行间距最佳实践
学习·华为·harmonyos
QiZhang | UESTC20 分钟前
学习日记day76
学习
yLDeveloper27 分钟前
从模型评估、梯度难题到科学初始化:一步步解析深度学习的训练问题
深度学习
久邦科技28 分钟前
20个免费电子书下载网站,实现电子书自由(2025持续更新)
学习
喵手37 分钟前
Python爬虫实战:旅游数据采集实战 - 携程&去哪儿酒店机票价格监控完整方案(附CSV导出 + SQLite持久化存储)!
爬虫·python·爬虫实战·零基础python爬虫教学·采集结果csv导出·旅游数据采集·携程/去哪儿酒店机票价格监控
Coder_Boy_41 分钟前
技术让开发更轻松的底层矛盾
java·大数据·数据库·人工智能·深度学习
2501_9449347341 分钟前
高职大数据技术专业,CDA和Python认证优先考哪个?
大数据·开发语言·python
Gain_chance42 分钟前
34-学习笔记尚硅谷数仓搭建-DWS层最近一日汇总表建表语句汇总
数据仓库·hive·笔记·学习·datagrip
啊森要自信1 小时前
CANN ops-cv:面向计算机视觉的 AI 硬件端高效算子库核心架构与开发逻辑
人工智能·计算机视觉·架构·cann