Pytorch学习--DataLoader的使用

一、DataLoader简介

DataLoader官网

重要参数:画红框的参数

  • dataset:
    • 作用:表示要加载的数据集。DataLoader通过该参数从数据集中读取数据。
    • 类型:Dataset,即PyTorch定义的Dataset类,用于封装数据并提供数据索引的功能。
  • batch_size:
    • 作用:指定每次加载的数据样本数量(即每个批次的数据量)。默认值为1。
    • 类型:int(可选),默认为1。设置为大于1的值时,可以加速训练,因为数据将被批量处理。
  • shuffle:
    • 作用:是否在每个epoch结束后打乱数据顺序。如果设置为True,数据会在每个epoch重新随机排列。默认值是False,即数据不打乱。
    • 类型:bool(可选),是否打乱数据。
  • sampler:
    • 作用:定义从数据集中提取数据的策略。可以传入一个Sampler类的实例,自定义数据抽样的方式。注意,如果指定了sampler,则不能再使用shuffle。
    • 类型:Sampler或Iterable(可选),用于控制数据抽样。
  • batch_sampler:
    • 作用:与sampler类似,但batch_sampler返回的是一批次的索引,而不是单个样本索引。此参数与batch_size、shuffle和drop_last互斥,不能同时使用。
    • 类型:Sampler或Iterable(可选),专门用于批次索引的抽样。
  • num_workers:
    • 作用:指定用于数据加载的子进程数量。0表示在主进程中进行数据加载。较大的值可以加速数据加载,但需要在进程间共享数据。
    • 类型:int(可选),默认为0。
  • drop_last:
    • 作用:是否丢弃最后一个未满批次的数据。当数据集的大小不能整除batch_size时,最后一个批次的大小可能会小于batch_size。如果将drop_last设为True,则丢弃这个不完整的批次。
    • 类型:bool(可选),默认为False。

二、代码初识

python 复制代码
import torchvision.datasets
from torch.utils.data import DataLoader

train_data=torchvision.datasets.CIFAR10(root="datasets",train=False,transform=torchvision.transforms.ToTensor(),download=True)
train_loader=DataLoader(dataset=train_data,batch_size=4,shuffle=True)

img,target=train_data[0]
print(img.shape)
print(target)

for data in train_loader:
    imgs,targets=data
    print(imgs.shape)
    print(targets)

因为这里采取的是随机抽样

三、使用tensorboard可视化

python 复制代码
import torchvision.datasets
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

train_data=torchvision.datasets.CIFAR10(root="datasets",train=False,transform=torchvision.transforms.ToTensor(),download=True)
#shuffle会在epoch中表现出来
train_loader=DataLoader(dataset=train_data,batch_size=4,shuffle=True)


img,target=train_data[0]
writer=SummaryWriter("logs")

step=0

for epoch in range(2):
    for data in train_loader:
        imgs,targets=data
        #注意:这里是add_images,不是add_image
        writer.add_images("epoch{}".format(epoch),imgs,step)
        step+=1
writer.close()
相关推荐
西红柿计算机毕设2 分钟前
基于安卓Android的健康饮食系统APP(源码+文档+部署+讲解)
大数据·数据库·vue.js·spring boot·python·android-studio
龙萱坤诺11 分钟前
AI自动评论插件V1.3 WordPress插件 自动化评论插件
运维·人工智能·自动化
QQ_51929232812 分钟前
【水下生物数据集】 水下生物识别 深度学习 目标检测 机器视觉 yolo(含数据集)
python·目标检测·数据集·海洋生物数据集
小龙14 分钟前
【Python爬虫实战】网络爬虫完整指南:网络协议OSI模型
爬虫·python·网络协议
BH0425090917 分钟前
VQ-VAE(2018-05:Neural Discrete Representation Learning)
人工智能·计算机视觉
single59421 分钟前
【综合算法学习】(第十篇)
java·数据结构·c++·vscode·学习·算法·leetcode
蜡笔小新星24 分钟前
PyTorch的基础教程
开发语言·人工智能·pytorch·经验分享·python·深度学习·学习
疯一样的码农25 分钟前
如何选择适合自己的 Python IDE
ide·python
DC妙妙屋28 分钟前
10.24.2024刷华为OD C题型(四) -- 对象list按照多个属性排序
1024程序员节
OBOO鸥柏36 分钟前
OBOO鸥柏丨液晶拼接大屏分布式基本管理系统架构显示技术曝光
人工智能·分布式·科技·系统架构·交互