Pytorch学习--DataLoader的使用

一、DataLoader简介

DataLoader官网

重要参数:画红框的参数

  • dataset:
    • 作用:表示要加载的数据集。DataLoader通过该参数从数据集中读取数据。
    • 类型:Dataset,即PyTorch定义的Dataset类,用于封装数据并提供数据索引的功能。
  • batch_size:
    • 作用:指定每次加载的数据样本数量(即每个批次的数据量)。默认值为1。
    • 类型:int(可选),默认为1。设置为大于1的值时,可以加速训练,因为数据将被批量处理。
  • shuffle:
    • 作用:是否在每个epoch结束后打乱数据顺序。如果设置为True,数据会在每个epoch重新随机排列。默认值是False,即数据不打乱。
    • 类型:bool(可选),是否打乱数据。
  • sampler:
    • 作用:定义从数据集中提取数据的策略。可以传入一个Sampler类的实例,自定义数据抽样的方式。注意,如果指定了sampler,则不能再使用shuffle。
    • 类型:Sampler或Iterable(可选),用于控制数据抽样。
  • batch_sampler:
    • 作用:与sampler类似,但batch_sampler返回的是一批次的索引,而不是单个样本索引。此参数与batch_size、shuffle和drop_last互斥,不能同时使用。
    • 类型:Sampler或Iterable(可选),专门用于批次索引的抽样。
  • num_workers:
    • 作用:指定用于数据加载的子进程数量。0表示在主进程中进行数据加载。较大的值可以加速数据加载,但需要在进程间共享数据。
    • 类型:int(可选),默认为0。
  • drop_last:
    • 作用:是否丢弃最后一个未满批次的数据。当数据集的大小不能整除batch_size时,最后一个批次的大小可能会小于batch_size。如果将drop_last设为True,则丢弃这个不完整的批次。
    • 类型:bool(可选),默认为False。

二、代码初识

python 复制代码
import torchvision.datasets
from torch.utils.data import DataLoader

train_data=torchvision.datasets.CIFAR10(root="datasets",train=False,transform=torchvision.transforms.ToTensor(),download=True)
train_loader=DataLoader(dataset=train_data,batch_size=4,shuffle=True)

img,target=train_data[0]
print(img.shape)
print(target)

for data in train_loader:
    imgs,targets=data
    print(imgs.shape)
    print(targets)

因为这里采取的是随机抽样

三、使用tensorboard可视化

python 复制代码
import torchvision.datasets
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

train_data=torchvision.datasets.CIFAR10(root="datasets",train=False,transform=torchvision.transforms.ToTensor(),download=True)
#shuffle会在epoch中表现出来
train_loader=DataLoader(dataset=train_data,batch_size=4,shuffle=True)


img,target=train_data[0]
writer=SummaryWriter("logs")

step=0

for epoch in range(2):
    for data in train_loader:
        imgs,targets=data
        #注意:这里是add_images,不是add_image
        writer.add_images("epoch{}".format(epoch),imgs,step)
        step+=1
writer.close()
相关推荐
YSGZJJ37 分钟前
股指期货的套保策略如何精准选择和规避风险?
人工智能·区块链
无脑敲代码,bug漫天飞39 分钟前
COR 损失函数
人工智能·机器学习
幽兰的天空43 分钟前
Python 中的模式匹配:深入了解 match 语句
开发语言·python
HPC_fac130520678162 小时前
以科学计算为切入点:剖析英伟达服务器过热难题
服务器·人工智能·深度学习·机器学习·计算机视觉·数据挖掘·gpu算力
网易独家音乐人Mike Zhou4 小时前
【卡尔曼滤波】数据预测Prediction观测器的理论推导及应用 C语言、Python实现(Kalman Filter)
c语言·python·单片机·物联网·算法·嵌入式·iot
安静读书4 小时前
Python解析视频FPS(帧率)、分辨率信息
python·opencv·音视频
小陈phd4 小时前
OpenCV从入门到精通实战(九)——基于dlib的疲劳监测 ear计算
人工智能·opencv·计算机视觉
Guofu_Liao5 小时前
大语言模型---LoRA简介;LoRA的优势;LoRA训练步骤;总结
人工智能·语言模型·自然语言处理·矩阵·llama
小二·6 小时前
java基础面试题笔记(基础篇)
java·笔记·python
朝九晚五ฺ7 小时前
【Linux探索学习】第十四弹——进程优先级:深入理解操作系统中的进程优先级
linux·运维·学习