Pytorch学习--DataLoader的使用

一、DataLoader简介

DataLoader官网

重要参数:画红框的参数

  • dataset:
    • 作用:表示要加载的数据集。DataLoader通过该参数从数据集中读取数据。
    • 类型:Dataset,即PyTorch定义的Dataset类,用于封装数据并提供数据索引的功能。
  • batch_size:
    • 作用:指定每次加载的数据样本数量(即每个批次的数据量)。默认值为1。
    • 类型:int(可选),默认为1。设置为大于1的值时,可以加速训练,因为数据将被批量处理。
  • shuffle:
    • 作用:是否在每个epoch结束后打乱数据顺序。如果设置为True,数据会在每个epoch重新随机排列。默认值是False,即数据不打乱。
    • 类型:bool(可选),是否打乱数据。
  • sampler:
    • 作用:定义从数据集中提取数据的策略。可以传入一个Sampler类的实例,自定义数据抽样的方式。注意,如果指定了sampler,则不能再使用shuffle。
    • 类型:Sampler或Iterable(可选),用于控制数据抽样。
  • batch_sampler:
    • 作用:与sampler类似,但batch_sampler返回的是一批次的索引,而不是单个样本索引。此参数与batch_size、shuffle和drop_last互斥,不能同时使用。
    • 类型:Sampler或Iterable(可选),专门用于批次索引的抽样。
  • num_workers:
    • 作用:指定用于数据加载的子进程数量。0表示在主进程中进行数据加载。较大的值可以加速数据加载,但需要在进程间共享数据。
    • 类型:int(可选),默认为0。
  • drop_last:
    • 作用:是否丢弃最后一个未满批次的数据。当数据集的大小不能整除batch_size时,最后一个批次的大小可能会小于batch_size。如果将drop_last设为True,则丢弃这个不完整的批次。
    • 类型:bool(可选),默认为False。

二、代码初识

python 复制代码
import torchvision.datasets
from torch.utils.data import DataLoader

train_data=torchvision.datasets.CIFAR10(root="datasets",train=False,transform=torchvision.transforms.ToTensor(),download=True)
train_loader=DataLoader(dataset=train_data,batch_size=4,shuffle=True)

img,target=train_data[0]
print(img.shape)
print(target)

for data in train_loader:
    imgs,targets=data
    print(imgs.shape)
    print(targets)

因为这里采取的是随机抽样

三、使用tensorboard可视化

python 复制代码
import torchvision.datasets
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

train_data=torchvision.datasets.CIFAR10(root="datasets",train=False,transform=torchvision.transforms.ToTensor(),download=True)
#shuffle会在epoch中表现出来
train_loader=DataLoader(dataset=train_data,batch_size=4,shuffle=True)


img,target=train_data[0]
writer=SummaryWriter("logs")

step=0

for epoch in range(2):
    for data in train_loader:
        imgs,targets=data
        #注意:这里是add_images,不是add_image
        writer.add_images("epoch{}".format(epoch),imgs,step)
        step+=1
writer.close()
相关推荐
Dxy123931021613 小时前
python把文件从一个文件复制到另一个文件夹
开发语言·python
金井PRATHAMA13 小时前
认知语义学隐喻理论对人工智能自然语言处理中深层语义分析的赋能与挑战
人工智能·自然语言处理·知识图谱
J_Xiong011713 小时前
【VLMs篇】07:Open-Qwen2VL:在学术资源上对完全开放的多模态大语言模型进行计算高效的预训练
人工智能·语言模型·自然语言处理
sonrisa_13 小时前
collections模块
python
老兵发新帖13 小时前
LlamaFactory能做哪些?
人工智能
2202_7567496913 小时前
LLM大模型-大模型微调(常见微调方法、LoRA原理与实战、LLaMA-Factory工具部署与训练、模型量化QLoRA)
人工智能·深度学习·llama
折翼的恶魔13 小时前
数据分析:排序
python·数据分析·pandas
人有一心14 小时前
深度学习中显性特征组合的网络结构crossNet
人工智能·深度学习
机器之心14 小时前
用光学生成图像,几乎0耗电,浙大校友一作研究登Nature
人工智能·openai