AI助力医疗数据自动化:诊断报告识别与管理

一、系统概述

思通数科推出的智能化诊断报告识别系统,基于信息抽取、文本挖掘、数据处理等技术,旨在帮助医疗机构更高效地管理庞大的诊断报告数据。系统通过自动提取诊断报告中的关键信息,解决了传统医疗数据管理中的信息碎片化、录入效率低、查询困难等问题,减轻医务人员的工作负担,提升医院的管理效率。对于用户的体验需求,系统不仅提供了丰富的API接口,支持快速接入和本地化部署,还完全符合国产化适配需求,让不同规模的医疗机构都能快速实现落地。

二、应用场景

  1. 医疗诊断报告的自动信息提取与分析

医院在日常的医疗工作中,需要处理大量的诊断报告,这些报告中包含了重要的患者病情信息和检测数据,但手动录入不仅费时且容易出错。思通数科的系统利用信息抽取技术,从报告中自动提取关键数据,如诊断结果、检查项目、数值指标等。通过文本挖掘和预设的数据处理流程,系统可以快速将诊断报告中的信息进行结构化存储,支持后续的数据统计和分析需求。这一功能不仅提高了数据录入效率,也为医学研究和管理决策提供了精准的数据支持。

  1. 门诊病历数据的自动管理

门诊记录通常包含大量文本信息,内容涉及患者主诉、医生诊断、处方等重要数据。传统的手工记录与检索模式,不仅让医务人员花费大量时间,还可能因为数据散乱而影响医疗质量。通过思通数科的智能化系统,医院可以自动识别和提取病历中的重要信息,将其归档于数据库中。这一操作可以通过特定算法,将文本分段识别为不同类型的数据块(如药品、病症、建议等),为门诊病历的统一管理和后续查阅提供极大便利。

  1. 医疗影像诊断报告的快速数据录入

医学影像报告通常涉及复杂的图像数据和文本描述。医院影像科和相关部门可以使用该系统快速实现影像报告中的关键信息提取,比如病变描述、诊断意见、建议检查等字段。这一操作可以结合多模态数据处理算法,将不同的文本信息和影像数据相互关联,从而自动生成病情报告。系统识别率达96%以上,确保了录入数据的准确性,并减少影像科工作压力,使医生能够专注于更复杂的诊断。

我们诚邀用户前往思通数科AI多模态能力平台亲自体验。

体验地址:nlp.stonedt.com

或通过网络搜索"思通数科AI多模态能力平台"

相关推荐
hunter20620613 分钟前
用opencv生成视频流,然后用rtsp进行拉流显示
人工智能·python·opencv
Daphnis_z14 分钟前
大模型应用编排工具Dify之常用编排组件
人工智能·chatgpt·prompt
yuanbenshidiaos1 小时前
【大数据】机器学习----------强化学习机器学习阶段尾声
人工智能·机器学习
Ase5gqe6 小时前
大数据-259 离线数仓 - Griffin架构 修改配置 pom.xml sparkProperties 编译启动
xml·大数据·架构
好评笔记6 小时前
AIGC视频生成模型:Stability AI的SVD(Stable Video Diffusion)模型
论文阅读·人工智能·深度学习·机器学习·计算机视觉·面试·aigc
史嘉庆6 小时前
Pandas 数据分析(二)【股票数据】
大数据·数据分析·pandas
算家云6 小时前
TangoFlux 本地部署实用教程:开启无限音频创意脑洞
人工智能·aigc·模型搭建·算家云、·应用社区·tangoflux
Shootingmemory7 小时前
自动化01
运维·自动化
唯余木叶下弦声8 小时前
PySpark之金融数据分析(Spark RDD、SQL练习题)
大数据·python·sql·数据分析·spark·pyspark
叫我:松哥8 小时前
基于Python django的音乐用户偏好分析及可视化系统设计与实现
人工智能·后端·python·mysql·数据分析·django