Pytorch学习--神经网络--非线性激活

一、用法

torch.nn.ReLU

  • 图像处理中的应用:在图像处理任务中,ReLU 激活函数能够增强特征提取的能力,使网络更好地捕捉图像的细节和边缘。这是因为 ReLU 对大部分负数响应为零,能在一定程度上减少网络计算量,并对特征层起到稀疏化的效果,避免信息的过度平滑。

torch.nn.Sigmoid

  • 图像处理中的应用:在图像分类或二分类的场景中,Sigmoid 是常用的激活函数。尤其是在图像分割的二值掩膜生成中,Sigmoid 可以用于二分类(例如前景与背景的划分),以确定每个像素属于前景或背景的概率。

二、代码实现

对于inplace的解释( inplace 默认为 False):

ReLU 的简单使用

python 复制代码
import torch
from torch import nn
from torch.nn import ReLU

input = torch.tensor([[-1,1],
                     [-0.5,5]])
input = torch.reshape(input,(1,1,2,2))


class Mary(nn.Module):
    def __init__(self):
        super(Mary,self).__init__()
        self.relu1 = ReLU()
    def forward(self,x):
        x = self.relu1(x)
        return x
Yorelee = Mary()

output = Yorelee(input)
print(output)

输出:

python 复制代码
tensor([[[[0., 1.],
          [0., 5.]]]])

Sigmoid 的简单使用

python 复制代码
import torch
import torchvision
from torch import nn
from torch.nn import Sigmoid
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

dataset = torchvision.datasets.CIFAR10("datasets",False,torchvision.transforms.ToTensor(),download=True)
dataloader = DataLoader(dataset,64)

class Mary(nn.Module):
    def __init__(self):
        super(Mary,self).__init__()
        self.sigmoid1 = Sigmoid()
    def forward(self,x):
        x = self.sigmoid1(x)
        return x
Yorelee = Mary()

writer = SummaryWriter("logs")

step = 0
for data in dataloader:
    img,target = data
    writer.add_images("input",img,step)
    output = Yorelee(img)
    writer.add_images("output",output,step)
    step += 1
writer.close()

输出:

相关推荐
深蓝海拓11 分钟前
Pyside6(PyQT5)中的QTableView与QSqlQueryModel、QSqlTableModel的联合使用
数据库·python·qt·pyqt
IE0611 分钟前
深度学习系列76:流式tts的一个简单实现
人工智能·深度学习
GIS数据转换器15 分钟前
城市生命线安全保障:技术应用与策略创新
大数据·人工智能·安全·3d·智慧城市
无须logic ᭄18 分钟前
CrypTen项目实践
python·机器学习·密码学·同态加密
百流31 分钟前
scala文件编译相关理解
开发语言·学习·scala
Channing Lewis31 分钟前
flask常见问答题
后端·python·flask
Channing Lewis33 分钟前
如何保护 Flask API 的安全性?
后端·python·flask
水兵没月1 小时前
钉钉群机器人设置——python版本
python·机器人·钉钉
一水鉴天2 小时前
为AI聊天工具添加一个知识系统 之65 详细设计 之6 变形机器人及伺服跟随
人工智能