Pytorch学习--神经网络--非线性激活

一、用法

torch.nn.ReLU

  • 图像处理中的应用:在图像处理任务中,ReLU 激活函数能够增强特征提取的能力,使网络更好地捕捉图像的细节和边缘。这是因为 ReLU 对大部分负数响应为零,能在一定程度上减少网络计算量,并对特征层起到稀疏化的效果,避免信息的过度平滑。

torch.nn.Sigmoid

  • 图像处理中的应用:在图像分类或二分类的场景中,Sigmoid 是常用的激活函数。尤其是在图像分割的二值掩膜生成中,Sigmoid 可以用于二分类(例如前景与背景的划分),以确定每个像素属于前景或背景的概率。

二、代码实现

对于inplace的解释( inplace 默认为 False):

ReLU 的简单使用

python 复制代码
import torch
from torch import nn
from torch.nn import ReLU

input = torch.tensor([[-1,1],
                     [-0.5,5]])
input = torch.reshape(input,(1,1,2,2))


class Mary(nn.Module):
    def __init__(self):
        super(Mary,self).__init__()
        self.relu1 = ReLU()
    def forward(self,x):
        x = self.relu1(x)
        return x
Yorelee = Mary()

output = Yorelee(input)
print(output)

输出:

python 复制代码
tensor([[[[0., 1.],
          [0., 5.]]]])

Sigmoid 的简单使用

python 复制代码
import torch
import torchvision
from torch import nn
from torch.nn import Sigmoid
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

dataset = torchvision.datasets.CIFAR10("datasets",False,torchvision.transforms.ToTensor(),download=True)
dataloader = DataLoader(dataset,64)

class Mary(nn.Module):
    def __init__(self):
        super(Mary,self).__init__()
        self.sigmoid1 = Sigmoid()
    def forward(self,x):
        x = self.sigmoid1(x)
        return x
Yorelee = Mary()

writer = SummaryWriter("logs")

step = 0
for data in dataloader:
    img,target = data
    writer.add_images("input",img,step)
    output = Yorelee(img)
    writer.add_images("output",output,step)
    step += 1
writer.close()

输出:

相关推荐
Coder_Boy_1 小时前
技术发展的核心规律是「加法打底,减法优化,重构平衡」
人工智能·spring boot·spring·重构
会飞的老朱3 小时前
医药集团数智化转型,智能综合管理平台激活集团管理新效能
大数据·人工智能·oa协同办公
聆风吟º4 小时前
CANN runtime 实战指南:异构计算场景中运行时组件的部署、调优与扩展技巧
人工智能·神经网络·cann·异构计算
寻星探路5 小时前
【深度长文】万字攻克网络原理:从 HTTP 报文解构到 HTTPS 终极加密逻辑
java·开发语言·网络·python·http·ai·https
Codebee6 小时前
能力中心 (Agent SkillCenter):开启AI技能管理新时代
人工智能
聆风吟º7 小时前
CANN runtime 全链路拆解:AI 异构计算运行时的任务管理与功能适配技术路径
人工智能·深度学习·神经网络·cann
uesowys7 小时前
Apache Spark算法开发指导-One-vs-Rest classifier
人工智能·算法·spark
AI_56787 小时前
AWS EC2新手入门:6步带你从零启动实例
大数据·数据库·人工智能·机器学习·aws
User_芊芊君子7 小时前
CANN大模型推理加速引擎ascend-transformer-boost深度解析:毫秒级响应的Transformer优化方案
人工智能·深度学习·transformer
ValhallaCoder7 小时前
hot100-二叉树I
数据结构·python·算法·二叉树