OpenCV自动滑块验证(Java版)

前提

爬与防爬就是一场"道高一尺,魔高一丈"的拉力赛,双方都在见招拆招。时至今日,较为常见的防爬手段有手机短信验证、滑块验证、按顺序点击图片验证等。

本文主要介绍滑块验证的应对之法。

验证实现

关键点在于获取滑块到滑动背景缺口图的横向距离,这里通过OpenCV的模板匹配技术matchTemplate,然后再通过selenium的Actions类完成滑动(拖动轨迹算法本文不予过多介绍,请自行查找相关资料)。

java 复制代码
//获取滑块到滑动背景缺口图的横向距离
double slideDistance = getSlideDistance(System.getProperty("user.dir")+"\\slideBlock.png", System.getProperty("user.dir")+"\\slideBg.png");
Actions actions = new Actions(driver);
WebElement dragElement = driver.findElement(By.id("tcaptcha_drag_button"));
//获取style属性值,其中设置了滑块初始偏离值  style=left: 23px;
//需要注意的是网页前端图片和本地图片比例是不同的,需要进行换算
slideDistance = slideDistance * 280 / 680 - 23;
actions.clickAndHold(dragElement).perform();
//根据滑动距离生成滑动轨迹,约定规则:开始慢->中间快->最后慢
List<Integer> moveTrack = getMoveTrack(slideDistance);
for (Integer index : moveTrack) {
    //Thread.sleep(20);
    actions.moveByOffset(index, 0).perform();
}
actions.release().perform();

getSlideDistance方法实现

对滑块进行处理

  1. 灰度化
  2. 去除图片黑边
  3. inRange二值化转黑白图

代码实现:

java 复制代码
// 加载OpenCV本地库
System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
//对滑块进行处理
Mat slideBlockMat = Imgcodecs.imread(slideBlockPicPath);
//1、灰度化图片
Imgproc.cvtColor(slideBlockMat, slideBlockMat, Imgproc.COLOR_BGR2GRAY);
//2、去除周围黑边
for (int row = 0; row < slideBlockMat.height(); row++) {
    for (int col = 0; col < slideBlockMat.width(); col++) {
        if (slideBlockMat.get(row, col)[0] == 0) {
            slideBlockMat.put(row, col, 96);
        }
    }
}
//3、inRange二值化转黑白图
Core.inRange(slideBlockMat, Scalar.all(96), Scalar.all(96), slideBlockMat);

对滑动背景图进行处理

  1. 灰度化
  2. 二值化转黑白图

代码如下:

java 复制代码
//对滑动背景图进行处理
Mat slideBgMat = Imgcodecs.imread(slideBgPicPath);
//1、灰度化图片
Imgproc.cvtColor(slideBgMat, slideBgMat, Imgproc.COLOR_BGR2GRAY);
//2、二值化
Imgproc.threshold(slideBgMat, slideBgMat, 127, 255, Imgproc.THRESH_BINARY);
Mat g_result = new Mat();
/*
 * matchTemplate:在模板和输入图像之间寻找匹配,获得匹配结果图像
 * result:保存匹配的结果矩阵
 * TM_CCOEFF_NORMED标准相关匹配算法
 */
Imgproc.matchTemplate(slideBgMat, slideBlockMat, g_result, Imgproc.TM_CCOEFF_NORMED); 
/* minMaxLoc:在给定的结果矩阵中寻找最大和最小值,并给出它们的位置
 * maxLoc最大值
 */
Point matchLocation = Core.minMaxLoc(g_result).maxLoc;
//返回匹配点的横向距离
return matchLocation.x;
相关推荐
devmoon5 小时前
在 Polkadot Runtime 中添加多个 Pallet 实例实战指南
java·开发语言·数据库·web3·区块链·波卡
凯子坚持 c5 小时前
StreamingLLM:无需训练即可支持无限上下文的推理技术
人工智能
Tfly__5 小时前
在PX4 gazebo仿真中加入Mid360(最新)
linux·人工智能·自动驾驶·ros·无人机·px4·mid360
野犬寒鸦5 小时前
从零起步学习并发编程 || 第七章:ThreadLocal深层解析及常见问题解决方案
java·服务器·开发语言·jvm·后端·学习
LLWZAI5 小时前
让朱雀AI检测无法判断的AI公众号文章,当创作者开始与算法「躲猫猫」
大数据·人工智能·深度学习
云姜.5 小时前
java抽象类和接口
java·开发语言
带刺的坐椅5 小时前
Claude Code Skills,Google A2A Skills,Solon AI Skills 有什么区别?
java·ai·solon·a2a·claudecode·skills
nLsUCWFJR5 小时前
(Matlab)基于贝叶斯优化卷积双向长短期记忆网络(CNN-BiLSTM)回归预测
opencv
深圳市九鼎创展科技6 小时前
瑞芯微 RK3399 开发板 X3399 评测:高性能 ARM 平台的多面手
linux·arm开发·人工智能·单片机·嵌入式硬件·边缘计算
爱学英语的程序员6 小时前
面试官:你了解过哪些数据库?
java·数据库·spring boot·sql·mysql·mybatis