// a是数组,n是数组的长度
void InsertSort(int* a, int n)
{
for (int i = 0; i < n - 1; i++)
{
int end = i;
int tmp = a[i + 1];
while (end >= 0)
{
if (a[end] > tmp)
{
a[end + 1] = a[end];
end--;
}
else
{
break;
}
}
a[end + 1] = tmp;
}
}
直接插入排序的特性总结:
元素集合越接近有序,直接插入排序算法的时间效率越高
时间复杂度:O(N^2)
空间复杂度:O(1)
稳定性:稳定
2.1.3 希尔排序
cpp复制代码
void ShellSort(int* a, int n)
{
// gap>1 预排序
// gap==1 直接插入排序
int gap = n;
while (gap > 1)
{
gap = gap / 3 + 1;
//i < n - gap 是防止tmp越界
for (int i = 0; i < n - gap; i++)
{
int end = i;
int tmp = a[end + gap];
while (end >= 0)
{
if (a[end] > tmp)
{
a[end + gap] = a[end];
end -= gap;
}
else
{
break;
}
}
a[end + gap] = tmp;
}
}
}
希尔排序的特性总结:
希尔排序是对直接插入排序的优化。
当 gap > 1时都是预排序,目的是让数组更接近于有序。当 gap == 1时,数组已经接近有序的了。
void _MergeSort(int* a, int begin, int end, int* tmp)
{
if (begin == end)
return;
// 小区间优化
if (end - begin + 1 < 10)
{
InsertSort(a + begin, end - begin + 1);
return;
}
int mid = (begin + end) / 2;
//[begin, mid] [mid+1, end]
_MergeSort(a, begin, mid, tmp);
_MergeSort(a, mid + 1, end, tmp);
int begin1 = begin, end1 = mid;
int begin2 = mid + 1, end2 = end;
int i = begin;
while (begin1 <= end1 && begin2 <= end2)
{
if (a[begin1] <= a[begin2])
{
tmp[i++] = a[begin1++];
}
else
{
tmp[i++] = a[begin2++];
}
}
while (begin1 <= end1)
{
tmp[i++] = a[begin1++];
}
while (begin2 <= end2)
{
tmp[i++] = a[begin2++];
}
memcpy(a + begin, tmp + begin, sizeof(int) * (end - begin + 1));
}
void MergeSort(int* a, int n)
{
int* tmp = (int*)malloc(sizeof(int) * n);
_MergeSort(a, 0, n - 1, tmp);
free(tmp);
}
非递归:两种方法,memcpy的位置不同
cpp复制代码
void MergeSortNonR(int* a, int n)
{
int* tmp = (int*)malloc(sizeof(int) * n);
int gap = 1;
while (gap < n)
{
int j = 0;
for (int i = 0; i < n; i += 2 * gap)
{
// 每组的合并数据
int begin1 = i, end1 = i + gap - 1;
int begin2 = i + gap, end2 = i + 2 * gap - 1;
printf("[%d,%d][%d,%d]\n", begin1, end1, begin2, end2);
if (end1 >= n || begin2 >= n)
{
break;
}
//修正
if (end2 >= n)
{
end2 = n - 1;
}
while (begin1 <= end1 && begin2 <= end2)
{
if (a[begin1] <= a[begin2])
{
tmp[j++] = a[begin1++];
}
else
{
tmp[j++] = a[begin2++];
}
}
while (begin1 <= end1)
{
tmp[j++] = a[begin1++];
}
while (begin2 <= end2)
{
tmp[j++] = a[begin2++];
}
//归并一组,拷贝一组
memcpy(a + i, tmp + i, sizeof(int) * (end2 - i + 1));
}
printf("\n");
gap *= 2;
}
free(tmp);
}
cpp复制代码
void MergeSortNonR(int* a, int n)
{
int* tmp = (int*)malloc(sizeof(int) * n);
// 1 2 4 ....
int gap = 1;
while (gap < n)
{
int j = 0;
for (int i = 0; i < n; i += 2 * gap)
{
// 每组的合并数据
int begin1 = i, end1 = i + gap - 1;
int begin2 = i + gap, end2 = i + 2 * gap - 1;
printf("修正前:[%d,%d][%d,%d]\n", begin1, end1, begin2, end2);
if (end1 >= n)
{
end1 = n - 1;
// 不存在区间
begin2 = n;
end2 = n - 1;
}
else if (begin2 >= n)
{
// 不存在区间
begin2 = n;
end2 = n - 1;
}
else if(end2 >= n)
{
end2 = n - 1;
}
printf("修正后:[%d,%d][%d,%d]\n", begin1, end1, begin2, end2);
while (begin1 <= end1 && begin2 <= end2)
{
if (a[begin1] <= a[begin2])
{
tmp[j++] = a[begin1++];
}
else
{
tmp[j++] = a[begin2++];
}
}
while (begin1 <= end1)
{
tmp[j++] = a[begin1++];
}
while (begin2 <= end2)
{
tmp[j++] = a[begin2++];
}
}
printf("\n");
memcpy(a, tmp, sizeof(int) * n);
gap *= 2;
}
free(tmp);
}
归并排序的特性总结:
归并的缺点在于需要O(N)的空间复杂度,归并排序的思考更多的是解决在磁盘中的外排序问题。
时间复杂度:O(N*logN)
空间复杂度:O(N)
稳定性:稳定
2.5 非比较排序
思想:计数排序又称为鸽巢原理,是对哈希直接定址法的变形应用。 操作步骤:
统计相同元素出现次数
根据统计的结果将序列回收到原来的序列中
cpp复制代码
void CountSort(int* a, int n)
{
int min = a[0], max = a[0];
for (int i = 0; i < n; i++)
{
if (a[i] < min)
{
min = a[i];
}
if (a[i] > max)
{
max = a[i];
}
}
int range = max - min + 1;
int* countA = (int*)malloc(sizeof(int) * range);
memset(countA, 0, sizeof(int) * range);
// 统计次数
for (int i = 0; i < n; i++)
{
countA[a[i] - min]++;
}
// 排序
int k = 0;
for (int j = 0; j < range; j++)
{
while (countA[j]--)
{
a[k++] = j + min;
}
}
}