NodeFormer:一种用于节点分类的可扩展图结构学习 Transformer

人工智能咨询培训老师叶梓 转载标明出处

现有的神经网络(GNNs)在处理大规模图数据时面临着一些挑战,如过度平滑、异质性、长距离依赖处理、边缘不完整性等问题,尤其是当输入图完全缺失时。为了解决这些问题,上海交通大学的研究者们人提出了一种名为NodeFormer的新型图结构学习Transformer。

NodeFormer提出了一种全新的全对消息传递方案,通过一种核化的Gumbel-Softmax操作符来减少算法复杂度,使其与节点数量呈线性关系。这种方法不仅能够高效地在大规模、潜在的全连接图中学习潜在图结构,而且能够以可微分的方式进行端到端的优化。

NodeFormer还引入了关系偏差和边缘级别的正则化损失,以更好地适应输入图(如果存在的话),并指导适当地学习自适应结构。

方法

NodeFormer通过一种新颖的方法来更新节点嵌入,采用核化的Gumbel-Softmax操作符,实现了每一层节点嵌入的O(N)复杂度更新。NodeFormer引入了关系偏差和边缘正则化损失机制,两者均在输入图可用时发挥作用,且计算复杂度为O(E)。在训练过程中,模型的目标是最小化监督分类损失和边缘正则化损失的加权和。

算法 1描述了NodeFormer的前馈计算过程。该算法从输入节点特征Z(0)=X和可选的图邻接矩阵A开始,通过迭代的方式,每一层都使用核化的Gumbel-Softmax操作符来更新节点嵌入。这个过程包括了关系偏差的引入,以及通过邻接矩阵A强化观察到的边的传播权重。

为了证明新的消息传递函数的正确性,提出了两个关键的理论问题。定理1(Softmax-Kernel的近似误差)指出,当特征映射的维度足够大且温度参数τ接近零时,正则化特征映射的分布将趋于原始的分类分布。定理2(核化Gumbel-Softmax随机变量的性质)进一步确认了这一点。

NodeFormer通过引入温度参数τ和随机特征映射的维度m,平衡了RF近似和Gumbel-Softmax近似之间的权衡。较大的τ有助于减少核维度m的负担,而较小的τ则需要较大的m来保证足够的RF近似精度。如果τ过大,每条边的权重将趋于1/N,即模型几乎退化为平均池化;而较小的τ则会使核化Gumbel-Softmax更好地近似分类分布。

图1阐释了NodeFormer的数据流向,突出了模型的三个主要组成部分:全对消息传递(MP)模块、关系偏差和边缘正则化损失。MP模块负责以O(N)的复杂度更新节点嵌入,而关系偏差和边缘正则化损失则根据输入图的可用性进行计算,两者的计算复杂度均为O(E)。这种设计使得NodeFormer在保持高效计算的同时,能够充分利用输入图的结构信息。

想要掌握如何将大模型的力量发挥到极致吗?叶老师带您深入了解 Llama Factory ------ 一款革命性的大模型微调工具(限时免费)。

1小时实战课程,您将学习到如何轻松上手并有效利用 Llama Factory 来微调您的模型,以发挥其最大潜力。

CSDN教学平台录播地址:https://edu.csdn.net/course/detail/39987

实验

实验采用了多种数据集,包括小型到中型的图数据集Cora、Citeseer、Deezer和Actor,以及更大规模的图数据集OGB-Proteins和Amazon2M。此外,还考虑了无输入图的半监督图像和文本分类任务,使用的是Mini-ImageNet和20News-Groups数据集。

在实验中,NodeFormer的输出预测层是一个单层的MLP(多层感知机),对于所有数据集,激活函数σ设置为sigmoid,温度参数τ设置为0.25。所有实验都在配备16GB内存的NVIDIA V100上进行。实验与多个基线模型进行比较,包括GCN、GAT、JKNet、MixHop、DropEdge、LDS-GNN、IDGL、SGC和GraphSAINT。

在Cora、Citeseer、Deezer和Actor数据集上进行了传导式节点分类实验。这些数据集的规模从2K到20K个节点不等。对于评估指标,Deezer数据集使用ROC-AUC,其他数据集使用准确率。图2展示了NodeFormer在这些数据集上的表现,无论是在同质性还是非同质性图上,NodeFormer都取得了最佳的准确率/ROC-AUC,特别是在两个非同质性图上,NodeFormer的性能大大超过了其他模型。

进一步测试了NodeFormer在大规模网络上的可扩展性,使用了OGB-Proteins和Amazon2M数据集,节点数分别超过10万个和200万个。OGB-Proteins是一个包含112个输出维度的多任务数据集,而Amazon2M是从亚马逊共购网络中提取的,包含长距离依赖。表2和表3展示了NodeFormer在这些数据集上的测试结果,无论是在ROC-AUC还是准确率上,NodeFormer都显著优于基线模型,并且内存消耗也更低。

在没有输入图的情况下,NodeFormer被应用于Mini-ImageNet和20News-Groups数据集上的半监督图像和文本分类任务。使用k-NN方法基于输入节点特征构建图,以启用GNN的消息传递和NodeFormer的基于图的组件。表4展示了在不同k值下的结果,NodeFormer在8个案例中的7个中都取得了最佳性能,表明NodeFormer对于k-NN图的依赖性较低,并且能够从数据中学习到有用的潜在图结构。

图3展示了NodeFormer与两种最先进的结构学习模型在训练/推理时间和GPU内存消耗方面的比较。NodeFormer在训练时间、推理时间和内存消耗方面都有显著降低。还探讨了随机组成部分的影响、边缘损失和关系偏差的影响,以及温度参数和特征映射维度的影响。

图6展示了温度和随机特征映射维度对模型性能的影响,结果与理论分析一致。图4和通过可视化,展示了NodeFormer学习到的节点嵌入和边连接,以及与原始图结构的比较,说明了NodeFormer如何通过学习潜在结构来改进下游节点级预测任务的性能。

NodeFormer在各种实验中都显示出了优异的性能,无论是在处理同质性还是非同质性图、大规模图数据集,还是在没有输入图的情况下进行图增强应用的任务。这些结果证明了NodeFormer在实际应用中的有效性和可扩展性。

https://arxiv.org/pdf/2306.08385v1

https://github.com/qitianwu/nodeformer

相关推荐
叫我:松哥1 小时前
基于Python django的音乐用户偏好分析及可视化系统设计与实现
人工智能·后端·python·mysql·数据分析·django
熊文豪2 小时前
深入解析人工智能中的协同过滤算法及其在推荐系统中的应用与优化
人工智能·算法
Vol火山2 小时前
AI引领工业制造智能化革命:机器视觉与时序数据预测的双重驱动
人工智能·制造
tuan_zhang3 小时前
第17章 安全培训筑牢梦想根基
人工智能·安全·工业软件·太空探索·战略欺骗·算法攻坚
Antonio9154 小时前
【opencv】第10章 角点检测
人工智能·opencv·计算机视觉
互联网资讯4 小时前
详解共享WiFi小程序怎么弄!
大数据·运维·网络·人工智能·小程序·生活
helianying554 小时前
AI赋能零售:ScriptEcho如何提升效率,优化用户体验
前端·人工智能·ux·零售
积鼎科技-多相流在线5 小时前
探索国产多相流仿真技术应用,积鼎科技助力石油化工工程数字化交付
人工智能·科技·cfd·流体仿真·多相流·virtualflow
XianxinMao5 小时前
开源AI崛起:新模型逼近商业巨头
人工智能·开源
格砸5 小时前
Trae使用体验,未来已至?
人工智能·openai·trae