深度学习基础--将yolov5的backbone模块用于目标识别会出现怎么效果呢??

前言

案例

将backbone模块用于识别天气分类

1、数据处理

1、导入库

python 复制代码
import torch 
import torchvision
import torch.nn as nn 
import torchvision.transforms as transforms
from torchvision import datasets, transforms

device = "cuda" if torch.cuda.is_available() else "cpu"

device
复制代码
'cuda'

2、查看数据类别

python 复制代码
import os, pathlib 

data_dir = './data/'
data_dir = pathlib.Path(data_dir)

classnames = [str(path).split("\\")[0] for path in os.listdir(data_dir)]
classnames
复制代码
['cloudy', 'rain', 'shine', 'sunrise']

3、导入数据

python 复制代码
data_transforms = transforms.Compose([
    transforms.Resize([224, 224]),
    transforms.ToTensor(),
    transforms.Normalize(              # 数据标准化处理---> 转化为 标准状态分布,使模型更容易收敛
        mean=[0.485, 0.456, 0.406],  # rgb,均值
        std=[0.229, 0.224, 0.225]    # rgb,标准差,这两个从数据集中随机抽样得到的
    )
])

total_data = datasets.ImageFolder("./data/", data_transforms)
total_data
复制代码
Dataset ImageFolder
    Number of datapoints: 1125
    Root location: ./data/
    StandardTransform
Transform: Compose(
               Resize(size=[224, 224], interpolation=bilinear, max_size=None, antialias=True)
               ToTensor()
               Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
           )

4、数据集划分

训练集 :测试集 = 8 :2

python 复制代码
train_size = int(len(total_data) * 0.8)
test_size = len(total_data) - train_size 
train_data, test_data = torch.utils.data.random_split(total_data, [train_size, test_size])
print("train_size", len(train_data))
print("test_size", len(test_data))
复制代码
train_size 900
test_size 225
python 复制代码
# 动态加载数据集
batch_size = 4

train_dl = torch.utils.data.DataLoader(
    train_data,
    batch_size=batch_size,
    shuffle=True
)

test_dl = torch.utils.data.DataLoader(
    test_data,
    batch_size=batch_size,
    shuffle=True
)
python 复制代码
# 查看数据格式
temp_data, temp_label = next(iter(train_dl))

print("data: ", temp_data.shape)
print("data_labels: ", temp_label)
复制代码
data:  torch.Size([4, 3, 224, 224])
data_labels:  tensor([3, 2, 0, 0])

5、展示一批数据

这里一批次大小:4

python 复制代码
import matplotlib.pyplot as plt 

temp_images, temp_labels = next(iter(test_dl))

plt.figure(figsize=(20, 10))

for i in range(4):
    plt.subplot(5, 5, i + 1)
    
    plt.imshow(temp_images[i].cpu().numpy().transpose(1, 2, 0))  # (C, H, W)  ==>  (H, W, C)
    plt.title(classnames[temp_labels[i]])
    
    plt.axis('off')

plt.show()

2、模型构建

整体网络:

C3网络参考:深度学习基础--yolov5网络结构简介,C3模块构建

SPPF网络模块图结构如下:

python 复制代码
import torch.nn.functional as F 
import warnings  # 确保导入 warnings 模块

# 自动计算p(填充)
def autop(k, p=None):
    if p is None:
        p = k // 2 if isinstance(k, int) else [i // 2 for i in k]
        
    return p 

# Conv模块搭建
'''
卷积层 + 标准化 + 激活函数
'''
class Conv(nn.Module):
    def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True):
        super().__init__()
        '''
        groups: 
            1: 标准卷积
            c1:  深度卷积
            1 ~ c1: 分组卷积
        bias:
            false: 不使用偏置
        '''
        self.conv = nn.Conv2d(c1, c2, kernel_size=k, stride=s, padding=autop(k, p), groups=g, bias=False)  
        self.bn = nn.BatchNorm2d(c2)
        '''
        act:
            true: silu激活函数
            否则: 如果是nn.Mudule(如: nn.Relu), 则调用本身
                  否则: Identity, 什么都不做
        '''
        self.act = nn.SiLU() if act is True else (act if isinstance(act, nn.Module()) else nn.Identity())
        
    def forward(self,x):
        return self.act(self.bn(self.conv(x)))
    
# Bottleneck模块, 用于特征提取和用于防止梯度消失、梯度爆炸问题
class Bottleneck(nn.Module):
    def __init__(self, c1, c2, shortcut=True, g=1, e=0.5):    # shortcut: 是否需要残差连接, e: 模型深度
        super().__init__()
        c_ = int(c1 * 2)
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = Conv(c_, c2, 3, 1, g=g)
        self.add = shortcut and c1 == c2  
        
    def forward(self, x):
        return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))

# 搭建C3模块
class C3(nn.Module):
    def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
        super().__init__()
        '''
        刚开始: 卷积层2层
        后面: n层bottlenck
        后 concat
        后 conv
        '''
        c_ = int(c1 * e)
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = Conv(c1, c_, 1, 1)   # 用于拼接
        self.cv3 = Conv(2 * c_, c2, 1)
        self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))  # * 解包
        
    def forward(self, x):
        # 拼接,按照 dim=1维进行拼接,故列要相同
        return self.cv3(torch.cat([self.m(self.cv1(x)), self.cv2(x)], dim=1))   # 结合图就知道了结构
    
# 搭建SPPF模块,用于特征融合
class SPPF(nn.Module):
    def __init__(self, c1, c2, k=5):
        super().__init__()
        c_ = c1 // 2 
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = Conv(c_ * 4, c2, 1, 1)   # 模型融合,这个时候模型通道扩大4倍,套用池化层公式,发现通过.m 通道数数不变
        self.m = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2)   # 套用卷积层、池化层公式,发现输出通道不变
        
    def forward(self, x):
        x = self.cv1(x)
        with warnings.catch_warnings():
            warnings.simplefilter('ignore')
            y1 = self.m(x)
            y2 = self.m(y1)
            y3 = self.m(y2)
            return self.cv2(torch.cat([x, y1, y2, y3], 1))   # 结合图

# 搭建backbone模块
class Yolov5_backbone(nn.Module):
    def __init__(self):
        super(Yolov5_backbone, self).__init__()
        
        # 采用常规卷积, kernel_size, stride 与 yolov5.yaml配置文件一致
        self.conv_1 = Conv(3, 64, 3, 2, 2) 
        self.conv_2 = Conv(64, 128, 3, 2)
        self.c3_3 = C3(128, 128)
        self.conv_4 = Conv(128, 256, 3, 2)
        self.c3_5 = C3(256, 256)
        self.conv_6 = Conv(256, 512, 3, 2)
        self.c3_7 = C3(512, 512)
        self.conv_8 = Conv(512, 1024, 3, 2)
        self.c3_9 = C3(1024, 1024)
        self.SPPF_10 = SPPF(1024, 1024, 5)
        
        self.classifiler = nn.Sequential(
            nn.Linear(in_features=65536, out_features=100),
            nn.ReLU(),
            nn.Linear(in_features=100, out_features=len(classnames))
        )
        
    def forward(self, x):
        x = self.conv_1(x)
        x = self.conv_2(x)
        x = self.c3_3(x)
        x = self.conv_4(x)
        x = self.c3_5(x)
        x = self.conv_6(x)
        x = self.c3_7(x)
        x = self.conv_8(x)
        x = self.c3_9(x)
        x = self.SPPF_10(x)
        
        x = torch.flatten(x, start_dim=1)
        x = self.classifiler(x)
        
        return x
python 复制代码
# 输出参数
model = Yolov5_backbone().to(device)
model
复制代码
Yolov5_backbone(
  (conv_1): Conv(
    (conv): Conv2d(3, 64, kernel_size=(3, 3), stride=(2, 2), padding=(2, 2), bias=False)
    (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (act): SiLU()
  )
  (conv_2): Conv(
    (conv): Conv2d(64, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
    (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (act): SiLU()
  )
  (c3_3): C3(
    (cv1): Conv(
      (conv): Conv2d(128, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (act): SiLU()
    )
    (cv2): Conv(
      (conv): Conv2d(128, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (act): SiLU()
    )
    (cv3): Conv(
      (conv): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (act): SiLU()
    )
    (m): Sequential(
      (0): Bottleneck(
        (cv1): Conv(
          (conv): Conv2d(64, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (act): SiLU()
        )
        (cv2): Conv(
          (conv): Conv2d(128, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (act): SiLU()
        )
      )
    )
  )
  (conv_4): Conv(
    (conv): Conv2d(128, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
    (bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (act): SiLU()
  )
  (c3_5): C3(
    (cv1): Conv(
      (conv): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (act): SiLU()
    )
    (cv2): Conv(
      (conv): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (act): SiLU()
    )
    (cv3): Conv(
      (conv): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (act): SiLU()
    )
    (m): Sequential(
      (0): Bottleneck(
        (cv1): Conv(
          (conv): Conv2d(128, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (act): SiLU()
        )
        (cv2): Conv(
          (conv): Conv2d(256, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (act): SiLU()
        )
      )
    )
  )
  (conv_6): Conv(
    (conv): Conv2d(256, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
    (bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (act): SiLU()
  )
  (c3_7): C3(
    (cv1): Conv(
      (conv): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (act): SiLU()
    )
    (cv2): Conv(
      (conv): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (act): SiLU()
    )
    (cv3): Conv(
      (conv): Conv2d(512, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (act): SiLU()
    )
    (m): Sequential(
      (0): Bottleneck(
        (cv1): Conv(
          (conv): Conv2d(256, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (act): SiLU()
        )
        (cv2): Conv(
          (conv): Conv2d(512, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (act): SiLU()
        )
      )
    )
  )
  (conv_8): Conv(
    (conv): Conv2d(512, 1024, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
    (bn): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (act): SiLU()
  )
  (c3_9): C3(
    (cv1): Conv(
      (conv): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (act): SiLU()
    )
    (cv2): Conv(
      (conv): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (act): SiLU()
    )
    (cv3): Conv(
      (conv): Conv2d(1024, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (act): SiLU()
    )
    (m): Sequential(
      (0): Bottleneck(
        (cv1): Conv(
          (conv): Conv2d(512, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (act): SiLU()
        )
        (cv2): Conv(
          (conv): Conv2d(1024, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (act): SiLU()
        )
      )
    )
  )
  (SPPF_10): SPPF(
    (cv1): Conv(
      (conv): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (act): SiLU()
    )
    (cv2): Conv(
      (conv): Conv2d(2048, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (act): SiLU()
    )
    (m): MaxPool2d(kernel_size=5, stride=1, padding=2, dilation=1, ceil_mode=False)
  )
  (classifiler): Sequential(
    (0): Linear(in_features=65536, out_features=100, bias=True)
    (1): ReLU()
    (2): Linear(in_features=100, out_features=4, bias=True)
  )
)
python 复制代码
import torchsummary as summary 
summary.summary(model, (3, 224, 224))
复制代码
----------------------------------------------------------------
        Layer (type)               Output Shape         Param #
================================================================
            Conv2d-1         [-1, 64, 113, 113]           1,728
       BatchNorm2d-2         [-1, 64, 113, 113]             128
              SiLU-3         [-1, 64, 113, 113]               0
              Conv-4         [-1, 64, 113, 113]               0
            Conv2d-5          [-1, 128, 57, 57]          73,728
       BatchNorm2d-6          [-1, 128, 57, 57]             256
              SiLU-7          [-1, 128, 57, 57]               0
              Conv-8          [-1, 128, 57, 57]               0
            Conv2d-9           [-1, 64, 57, 57]           8,192
      BatchNorm2d-10           [-1, 64, 57, 57]             128
             SiLU-11           [-1, 64, 57, 57]               0
             Conv-12           [-1, 64, 57, 57]               0
           Conv2d-13          [-1, 128, 57, 57]           8,192
      BatchNorm2d-14          [-1, 128, 57, 57]             256
             SiLU-15          [-1, 128, 57, 57]               0
             Conv-16          [-1, 128, 57, 57]               0
           Conv2d-17           [-1, 64, 57, 57]          73,728
      BatchNorm2d-18           [-1, 64, 57, 57]             128
             SiLU-19           [-1, 64, 57, 57]               0
             Conv-20           [-1, 64, 57, 57]               0
       Bottleneck-21           [-1, 64, 57, 57]               0
           Conv2d-22           [-1, 64, 57, 57]           8,192
      BatchNorm2d-23           [-1, 64, 57, 57]             128
             SiLU-24           [-1, 64, 57, 57]               0
             Conv-25           [-1, 64, 57, 57]               0
           Conv2d-26          [-1, 128, 57, 57]          16,384
      BatchNorm2d-27          [-1, 128, 57, 57]             256
             SiLU-28          [-1, 128, 57, 57]               0
             Conv-29          [-1, 128, 57, 57]               0
               C3-30          [-1, 128, 57, 57]               0
           Conv2d-31          [-1, 256, 29, 29]         294,912
      BatchNorm2d-32          [-1, 256, 29, 29]             512
             SiLU-33          [-1, 256, 29, 29]               0
             Conv-34          [-1, 256, 29, 29]               0
           Conv2d-35          [-1, 128, 29, 29]          32,768
      BatchNorm2d-36          [-1, 128, 29, 29]             256
             SiLU-37          [-1, 128, 29, 29]               0
             Conv-38          [-1, 128, 29, 29]               0
           Conv2d-39          [-1, 256, 29, 29]          32,768
      BatchNorm2d-40          [-1, 256, 29, 29]             512
             SiLU-41          [-1, 256, 29, 29]               0
             Conv-42          [-1, 256, 29, 29]               0
           Conv2d-43          [-1, 128, 29, 29]         294,912
      BatchNorm2d-44          [-1, 128, 29, 29]             256
             SiLU-45          [-1, 128, 29, 29]               0
             Conv-46          [-1, 128, 29, 29]               0
       Bottleneck-47          [-1, 128, 29, 29]               0
           Conv2d-48          [-1, 128, 29, 29]          32,768
      BatchNorm2d-49          [-1, 128, 29, 29]             256
             SiLU-50          [-1, 128, 29, 29]               0
             Conv-51          [-1, 128, 29, 29]               0
           Conv2d-52          [-1, 256, 29, 29]          65,536
      BatchNorm2d-53          [-1, 256, 29, 29]             512
             SiLU-54          [-1, 256, 29, 29]               0
             Conv-55          [-1, 256, 29, 29]               0
               C3-56          [-1, 256, 29, 29]               0
           Conv2d-57          [-1, 512, 15, 15]       1,179,648
      BatchNorm2d-58          [-1, 512, 15, 15]           1,024
             SiLU-59          [-1, 512, 15, 15]               0
             Conv-60          [-1, 512, 15, 15]               0
           Conv2d-61          [-1, 256, 15, 15]         131,072
      BatchNorm2d-62          [-1, 256, 15, 15]             512
             SiLU-63          [-1, 256, 15, 15]               0
             Conv-64          [-1, 256, 15, 15]               0
           Conv2d-65          [-1, 512, 15, 15]         131,072
      BatchNorm2d-66          [-1, 512, 15, 15]           1,024
             SiLU-67          [-1, 512, 15, 15]               0
             Conv-68          [-1, 512, 15, 15]               0
           Conv2d-69          [-1, 256, 15, 15]       1,179,648
      BatchNorm2d-70          [-1, 256, 15, 15]             512
             SiLU-71          [-1, 256, 15, 15]               0
             Conv-72          [-1, 256, 15, 15]               0
       Bottleneck-73          [-1, 256, 15, 15]               0
           Conv2d-74          [-1, 256, 15, 15]         131,072
      BatchNorm2d-75          [-1, 256, 15, 15]             512
             SiLU-76          [-1, 256, 15, 15]               0
             Conv-77          [-1, 256, 15, 15]               0
           Conv2d-78          [-1, 512, 15, 15]         262,144
      BatchNorm2d-79          [-1, 512, 15, 15]           1,024
             SiLU-80          [-1, 512, 15, 15]               0
             Conv-81          [-1, 512, 15, 15]               0
               C3-82          [-1, 512, 15, 15]               0
           Conv2d-83           [-1, 1024, 8, 8]       4,718,592
      BatchNorm2d-84           [-1, 1024, 8, 8]           2,048
             SiLU-85           [-1, 1024, 8, 8]               0
             Conv-86           [-1, 1024, 8, 8]               0
           Conv2d-87            [-1, 512, 8, 8]         524,288
      BatchNorm2d-88            [-1, 512, 8, 8]           1,024
             SiLU-89            [-1, 512, 8, 8]               0
             Conv-90            [-1, 512, 8, 8]               0
           Conv2d-91           [-1, 1024, 8, 8]         524,288
      BatchNorm2d-92           [-1, 1024, 8, 8]           2,048
             SiLU-93           [-1, 1024, 8, 8]               0
             Conv-94           [-1, 1024, 8, 8]               0
           Conv2d-95            [-1, 512, 8, 8]       4,718,592
      BatchNorm2d-96            [-1, 512, 8, 8]           1,024
             SiLU-97            [-1, 512, 8, 8]               0
             Conv-98            [-1, 512, 8, 8]               0
       Bottleneck-99            [-1, 512, 8, 8]               0
          Conv2d-100            [-1, 512, 8, 8]         524,288
     BatchNorm2d-101            [-1, 512, 8, 8]           1,024
            SiLU-102            [-1, 512, 8, 8]               0
            Conv-103            [-1, 512, 8, 8]               0
          Conv2d-104           [-1, 1024, 8, 8]       1,048,576
     BatchNorm2d-105           [-1, 1024, 8, 8]           2,048
            SiLU-106           [-1, 1024, 8, 8]               0
            Conv-107           [-1, 1024, 8, 8]               0
              C3-108           [-1, 1024, 8, 8]               0
          Conv2d-109            [-1, 512, 8, 8]         524,288
     BatchNorm2d-110            [-1, 512, 8, 8]           1,024
            SiLU-111            [-1, 512, 8, 8]               0
            Conv-112            [-1, 512, 8, 8]               0
       MaxPool2d-113            [-1, 512, 8, 8]               0
       MaxPool2d-114            [-1, 512, 8, 8]               0
       MaxPool2d-115            [-1, 512, 8, 8]               0
          Conv2d-116           [-1, 1024, 8, 8]       2,097,152
     BatchNorm2d-117           [-1, 1024, 8, 8]           2,048
            SiLU-118           [-1, 1024, 8, 8]               0
            Conv-119           [-1, 1024, 8, 8]               0
            SPPF-120           [-1, 1024, 8, 8]               0
          Linear-121                  [-1, 100]       6,553,700
            ReLU-122                  [-1, 100]               0
          Linear-123                    [-1, 4]             404
================================================================
Total params: 25,213,112
Trainable params: 25,213,112
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 0.57
Forward/backward pass size (MB): 149.98
Params size (MB): 96.18
Estimated Total Size (MB): 246.74
----------------------------------------------------------------

3、模型训练

1、构建训练集

python 复制代码
def train(dataloader, model, loss_fn, optimizer):
    size = len(dataloader.dataset)  # 总数目
    num_batch = len(dataloader)      # 批次数目
    
    train_acc, train_loss = 0, 0
    
    for X, y in dataloader:
        X, y = X.to(device), y.to(device) 
        
        predict = model(X)
        loss = loss_fn(predict, y)
        
        # 梯度清0、求导、重新设置参数
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        
        train_acc += (predict.argmax(1) == y).type(torch.float).sum().item()
        train_loss += loss.item()
        
    train_acc /= size
    train_loss /= num_batch
    
    return train_acc, train_loss

2、构建测试集

python 复制代码
def test(dataloader, model, loss_fn):
    size = len(dataloader.dataset)
    num_batch = len(dataloader)
    
    test_acc, test_loss = 0, 0
    
    with torch.no_grad():
        for X, y in dataloader:
            X, y = X.to(device), y.to(device)
            
            predict = model(X)
            loss = loss_fn(predict, y)
            
            test_acc += (predict.argmax(1) == y).type(torch.float).sum().item()
            test_loss += loss.item()
            
    test_acc /= size 
    test_loss /= num_batch
    
    return test_acc, test_loss 

3、设置超参数

python 复制代码
learn_rate = 1e-4 
optimizer = torch.optim.Adam(model.parameters(), lr=learn_rate)
loss_fn = nn.CrossEntropyLoss()

4、模型正式训练

python 复制代码
import copy 

epochs = 60

train_acc, train_loss, test_acc, test_loss = [], [], [], []

best_acc = 0

for epoch in range(epochs):
    
    model.train()
    epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, optimizer)
    
    model.eval()
    epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)
    
    # 保存最佳模型到 best_model
    if epoch_test_acc > best_acc:
        best_acc   = epoch_test_acc
        best_model = copy.deepcopy(model)
    
    train_acc.append(epoch_train_acc)
    train_loss.append(epoch_train_loss)
    test_acc.append(epoch_test_acc)
    test_loss.append(epoch_test_loss)
    
    # 获取当前的学习率
    lr = optimizer.state_dict()['param_groups'][0]['lr']
    
    template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%, Test_loss:{:.3f}, Lr:{:.2E}')
    print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss, 
                          epoch_test_acc*100, epoch_test_loss, lr))
    
# 保存最佳模型到文件中
PATH = './best_model.pth'  # 保存的参数文件名
torch.save(model.state_dict(), PATH)

print('Done')
复制代码
Epoch: 1, Train_acc:59.0%, Train_loss:1.106, Test_acc:71.1%, Test_loss:0.740, Lr:1.00E-04
Epoch: 2, Train_acc:70.0%, Train_loss:0.776, Test_acc:83.1%, Test_loss:0.468, Lr:1.00E-04
Epoch: 3, Train_acc:75.2%, Train_loss:0.661, Test_acc:84.0%, Test_loss:0.461, Lr:1.00E-04
Epoch: 4, Train_acc:77.4%, Train_loss:0.605, Test_acc:88.4%, Test_loss:0.396, Lr:1.00E-04
Epoch: 5, Train_acc:80.3%, Train_loss:0.529, Test_acc:82.7%, Test_loss:0.415, Lr:1.00E-04
Epoch: 6, Train_acc:83.8%, Train_loss:0.422, Test_acc:83.6%, Test_loss:0.416, Lr:1.00E-04
Epoch: 7, Train_acc:85.8%, Train_loss:0.423, Test_acc:87.1%, Test_loss:0.343, Lr:1.00E-04
Epoch: 8, Train_acc:85.6%, Train_loss:0.393, Test_acc:87.6%, Test_loss:0.306, Lr:1.00E-04
Epoch: 9, Train_acc:86.3%, Train_loss:0.354, Test_acc:89.3%, Test_loss:0.338, Lr:1.00E-04
Epoch:10, Train_acc:86.6%, Train_loss:0.340, Test_acc:92.9%, Test_loss:0.276, Lr:1.00E-04
Epoch:11, Train_acc:88.8%, Train_loss:0.317, Test_acc:90.2%, Test_loss:0.290, Lr:1.00E-04
Epoch:12, Train_acc:87.9%, Train_loss:0.327, Test_acc:88.0%, Test_loss:0.338, Lr:1.00E-04
Epoch:13, Train_acc:89.2%, Train_loss:0.315, Test_acc:92.0%, Test_loss:0.337, Lr:1.00E-04
Epoch:14, Train_acc:91.1%, Train_loss:0.230, Test_acc:92.0%, Test_loss:0.369, Lr:1.00E-04
Epoch:15, Train_acc:93.3%, Train_loss:0.182, Test_acc:89.8%, Test_loss:0.278, Lr:1.00E-04
Epoch:16, Train_acc:91.6%, Train_loss:0.229, Test_acc:90.2%, Test_loss:0.290, Lr:1.00E-04
Epoch:17, Train_acc:90.9%, Train_loss:0.230, Test_acc:91.6%, Test_loss:0.272, Lr:1.00E-04
Epoch:18, Train_acc:93.9%, Train_loss:0.152, Test_acc:92.0%, Test_loss:0.280, Lr:1.00E-04
Epoch:19, Train_acc:94.7%, Train_loss:0.159, Test_acc:92.0%, Test_loss:0.262, Lr:1.00E-04
Epoch:20, Train_acc:95.9%, Train_loss:0.124, Test_acc:91.1%, Test_loss:0.260, Lr:1.00E-04
Epoch:21, Train_acc:95.7%, Train_loss:0.102, Test_acc:88.9%, Test_loss:0.342, Lr:1.00E-04
Epoch:22, Train_acc:95.9%, Train_loss:0.113, Test_acc:92.4%, Test_loss:0.275, Lr:1.00E-04
Epoch:23, Train_acc:96.1%, Train_loss:0.130, Test_acc:92.9%, Test_loss:0.308, Lr:1.00E-04
Epoch:24, Train_acc:94.8%, Train_loss:0.161, Test_acc:86.7%, Test_loss:0.456, Lr:1.00E-04
Epoch:25, Train_acc:95.2%, Train_loss:0.139, Test_acc:89.3%, Test_loss:0.428, Lr:1.00E-04
Epoch:26, Train_acc:96.0%, Train_loss:0.103, Test_acc:92.9%, Test_loss:0.313, Lr:1.00E-04
Epoch:27, Train_acc:96.0%, Train_loss:0.098, Test_acc:88.9%, Test_loss:0.520, Lr:1.00E-04
Epoch:28, Train_acc:97.2%, Train_loss:0.079, Test_acc:91.1%, Test_loss:0.404, Lr:1.00E-04
Epoch:29, Train_acc:98.6%, Train_loss:0.037, Test_acc:92.0%, Test_loss:0.270, Lr:1.00E-04
Epoch:30, Train_acc:98.8%, Train_loss:0.033, Test_acc:88.4%, Test_loss:0.520, Lr:1.00E-04
Epoch:31, Train_acc:95.6%, Train_loss:0.139, Test_acc:91.6%, Test_loss:0.370, Lr:1.00E-04
Epoch:32, Train_acc:96.7%, Train_loss:0.116, Test_acc:89.3%, Test_loss:0.376, Lr:1.00E-04
Epoch:33, Train_acc:96.4%, Train_loss:0.102, Test_acc:91.6%, Test_loss:0.342, Lr:1.00E-04
Epoch:34, Train_acc:98.6%, Train_loss:0.049, Test_acc:87.1%, Test_loss:0.417, Lr:1.00E-04
Epoch:35, Train_acc:97.9%, Train_loss:0.068, Test_acc:90.7%, Test_loss:0.423, Lr:1.00E-04
Epoch:36, Train_acc:98.3%, Train_loss:0.048, Test_acc:89.3%, Test_loss:0.492, Lr:1.00E-04
Epoch:37, Train_acc:98.0%, Train_loss:0.054, Test_acc:91.1%, Test_loss:0.355, Lr:1.00E-04
Epoch:38, Train_acc:98.6%, Train_loss:0.060, Test_acc:92.4%, Test_loss:0.402, Lr:1.00E-04
Epoch:39, Train_acc:97.9%, Train_loss:0.065, Test_acc:86.7%, Test_loss:0.498, Lr:1.00E-04
Epoch:40, Train_acc:98.0%, Train_loss:0.055, Test_acc:88.4%, Test_loss:0.514, Lr:1.00E-04
Epoch:41, Train_acc:99.1%, Train_loss:0.029, Test_acc:90.7%, Test_loss:0.381, Lr:1.00E-04
Epoch:42, Train_acc:98.0%, Train_loss:0.069, Test_acc:92.4%, Test_loss:0.377, Lr:1.00E-04
Epoch:43, Train_acc:99.4%, Train_loss:0.021, Test_acc:90.2%, Test_loss:0.403, Lr:1.00E-04
Epoch:44, Train_acc:98.0%, Train_loss:0.055, Test_acc:85.3%, Test_loss:0.686, Lr:1.00E-04
Epoch:45, Train_acc:98.0%, Train_loss:0.074, Test_acc:91.1%, Test_loss:0.321, Lr:1.00E-04
Epoch:46, Train_acc:98.6%, Train_loss:0.038, Test_acc:91.6%, Test_loss:0.426, Lr:1.00E-04
Epoch:47, Train_acc:97.4%, Train_loss:0.075, Test_acc:87.1%, Test_loss:0.604, Lr:1.00E-04
Epoch:48, Train_acc:99.6%, Train_loss:0.027, Test_acc:91.6%, Test_loss:0.379, Lr:1.00E-04
Epoch:49, Train_acc:99.8%, Train_loss:0.007, Test_acc:92.4%, Test_loss:0.381, Lr:1.00E-04
Epoch:50, Train_acc:100.0%, Train_loss:0.007, Test_acc:92.9%, Test_loss:0.361, Lr:1.00E-04
Epoch:51, Train_acc:99.8%, Train_loss:0.018, Test_acc:90.7%, Test_loss:0.446, Lr:1.00E-04
Epoch:52, Train_acc:99.0%, Train_loss:0.032, Test_acc:89.8%, Test_loss:0.588, Lr:1.00E-04
Epoch:53, Train_acc:97.7%, Train_loss:0.060, Test_acc:90.7%, Test_loss:0.456, Lr:1.00E-04
Epoch:54, Train_acc:97.7%, Train_loss:0.059, Test_acc:89.8%, Test_loss:0.506, Lr:1.00E-04
Epoch:55, Train_acc:98.6%, Train_loss:0.046, Test_acc:90.7%, Test_loss:0.350, Lr:1.00E-04
Epoch:56, Train_acc:99.7%, Train_loss:0.010, Test_acc:91.6%, Test_loss:0.349, Lr:1.00E-04
Epoch:57, Train_acc:99.6%, Train_loss:0.012, Test_acc:91.6%, Test_loss:0.369, Lr:1.00E-04
Epoch:58, Train_acc:98.9%, Train_loss:0.053, Test_acc:88.9%, Test_loss:0.666, Lr:1.00E-04
Epoch:59, Train_acc:98.2%, Train_loss:0.054, Test_acc:87.1%, Test_loss:0.509, Lr:1.00E-04
Epoch:60, Train_acc:98.7%, Train_loss:0.037, Test_acc:90.2%, Test_loss:0.513, Lr:1.00E-04
Done

5、结果显示和评估

1、结果显示

python 复制代码
import matplotlib.pyplot as plt 

#隐藏警告和显示中文
import warnings
warnings.filterwarnings("ignore")               #忽略警告信息
plt.rcParams['font.sans-serif']    = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False      # 用来正常显示负号
plt.rcParams['figure.dpi']         = 100        #分辨率

x = range(epochs)
# 创建画板
plt.figure(figsize=(12, 3))
# 子图一
plt.subplot(1, 2, 1)
plt.plot(x, train_acc, label='Train Accurary')
plt.plot(x, test_acc, label='Test Accurary')
plt.legend(loc='lower right')
plt.title("Train and test Accurary")
# 子图二
plt.subplot(1, 2, 2)
plt.plot(x, train_loss, label='Train loss')
plt.plot(x, test_loss, label='Test loss')
plt.legend(loc='upper right')
plt.title("Train and test Loss")

plt.show()

👀 解释:

  • 总体效果还是不错的,损失率低于1,但是测试集的损失率有点小小不稳定
  • 准确率:刚开始出现了欠拟合的现象,但是后面好了,训练准确率稳定在100%附件(98%、99%等),测试集稳定在90%附件;
  • 整体:yolov5这个用于目标检测的网络用语目标识别也是有不错的效果。

2、评估

python 复制代码
best_model.load_state_dict(torch.load(PATH, map_location=device))
epoch_test_acc, epoch_test_loss = test(test_dl, best_model, loss_fn)

epoch_test_acc, epoch_test_loss
复制代码
(0.9022222222222223, 0.5129974257313852)
  • 准确率在0.9左右,效果良好,且损失率为0.5,低于1.0。
相关推荐
云卓SKYDROID5 分钟前
无人机遥测系统工作与技术难点分析!
人工智能·无人机·科普·高科技·云卓科技
Start_Present10 分钟前
Pytorch 第十三回:神经网络编码器——自动编解码器
pytorch·python·深度学习·神经网络
Moutai码农13 分钟前
大模型-提示词(Prompt)技巧
人工智能·语言模型·prompt
Moutai码农16 分钟前
大模型-提示词(Prompt)最佳实践
人工智能·语言模型·prompt
阿巴阿巴拉17 分钟前
Scala简介与基础语法学习总结
人工智能
AdaCoding28 分钟前
YOLOv8架构详解
yolo·网络结构图
zxsz_com_cn36 分钟前
风电行业预测性维护解决方案:AIoT驱动下的风机健康管理革命
大数据·运维·人工智能
old_power1 小时前
PyTorch 分布式训练(Distributed Data Parallel, DDP)简介
pytorch·ddp
云卷云舒___________2 小时前
【Ultralytics YOLO COCO 评估脚本 | 获得COCO评价指标】
yolo·coco·ultralytics