- 🍨 本文为🔗365天深度学习训练营 中的学习记录博客
- 🍖 原作者:K同学啊
前言
-
RNN是很经典的模型,原理参考:深度学习基础--一文搞懂RNN
-
这个案例是一个基础案例,用RNN模型去做一个二分类问题,心脏病预测,数据集在kaggle上可以找到;
-
本篇为pytorch实现,TensorFlow实现为:基于RNN模型的心脏病预测(tensorflow实现)
-
欢迎收藏加关注,本人将会持续更新。
文章目录
1、数据处理
1、导入库
python
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from torch.utils.data import DataLoader, TensorDataset
import torch
device = 'cuda' if torch.cuda.is_available() else 'cpu'
device
'cuda'
2、导入数据
python
data = pd.read_csv('./heart.csv')
data.head()
| | age | sex | cp | trestbps | chol | fbs | restecg | thalach | exang | oldpeak | slope | ca | thal | target |
| 0 | 63 | 1 | 3 | 145 | 233 | 1 | 0 | 150 | 0 | 2.3 | 0 | 0 | 1 | 1 |
| 1 | 37 | 1 | 2 | 130 | 250 | 0 | 1 | 187 | 0 | 3.5 | 0 | 0 | 2 | 1 |
| 2 | 41 | 0 | 1 | 130 | 204 | 0 | 0 | 172 | 0 | 1.4 | 2 | 0 | 2 | 1 |
| 3 | 56 | 1 | 1 | 120 | 236 | 0 | 1 | 178 | 0 | 0.8 | 2 | 0 | 2 | 1 |
4 | 57 | 0 | 0 | 120 | 354 | 0 | 1 | 163 | 1 | 0.6 | 2 | 0 | 2 | 1 |
---|
- age - 年龄
- sex - (1 = male(男性); 0 = (女性))
- cp - chest pain type(胸部疼痛类型)(1:典型的心绞痛-typical,2:非典型心绞痛-atypical,3:没有心绞痛-non-anginal,4:无症状-asymptomatic)
- trestbps - 静息血压 (in mm Hg on admission to the hospital)
- chol - 胆固醇 in mg/dl
- fbs - (空腹血糖 > 120 mg/dl) (1 = true; 0 = false)
- restecg - 静息心电图测量(0:普通,1:ST-T波异常,2:可能左心室肥大)
- thalach - 最高心跳率
- exang - 运动诱发心绞痛 (1 = yes; 0 = no)
- oldpeak - 运动相对于休息引起的ST抑制
- slope - 运动ST段的峰值斜率(1:上坡-upsloping,2:平的-flat,3:下坡-downsloping)
- ca - 主要血管数目(0-4)
- thal - 一种叫做地中海贫血的血液疾病(3 = normal; 6 = 固定的缺陷-fixed defect; 7 = 可逆的缺陷-reversable defect)
- target - 是否患病 (1=yes, 0=no)
3、数据分析
数据初步分析
python
data.info() # 数据类型分析
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 303 entries, 0 to 302
Data columns (total 14 columns):
# Column Non-Null Count Dtype
--- ------ -------------- -----
0 age 303 non-null int64
1 sex 303 non-null int64
2 cp 303 non-null int64
3 trestbps 303 non-null int64
4 chol 303 non-null int64
5 fbs 303 non-null int64
6 restecg 303 non-null int64
7 thalach 303 non-null int64
8 exang 303 non-null int64
9 oldpeak 303 non-null float64
10 slope 303 non-null int64
11 ca 303 non-null int64
12 thal 303 non-null int64
13 target 303 non-null int64
dtypes: float64(1), int64(13)
memory usage: 33.3 KB
其中分类变量为:sex、cp、fbs、restecg、exang、slope、ca、thal、target
数值型变量:age、trestbps、chol、thalach、oldpeak
python
data.describe() # 描述性
| | age | sex | cp | trestbps | chol | fbs | restecg | thalach | exang | oldpeak | slope | ca | thal | target |
| count | 303.000000 | 303.000000 | 303.000000 | 303.000000 | 303.000000 | 303.000000 | 303.000000 | 303.000000 | 303.000000 | 303.000000 | 303.000000 | 303.000000 | 303.000000 | 303.000000 |
| mean | 54.366337 | 0.683168 | 0.966997 | 131.623762 | 246.264026 | 0.148515 | 0.528053 | 149.646865 | 0.326733 | 1.039604 | 1.399340 | 0.729373 | 2.313531 | 0.544554 |
| std | 9.082101 | 0.466011 | 1.032052 | 17.538143 | 51.830751 | 0.356198 | 0.525860 | 22.905161 | 0.469794 | 1.161075 | 0.616226 | 1.022606 | 0.612277 | 0.498835 |
| min | 29.000000 | 0.000000 | 0.000000 | 94.000000 | 126.000000 | 0.000000 | 0.000000 | 71.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| 25% | 47.500000 | 0.000000 | 0.000000 | 120.000000 | 211.000000 | 0.000000 | 0.000000 | 133.500000 | 0.000000 | 0.000000 | 1.000000 | 0.000000 | 2.000000 | 0.000000 |
| 50% | 55.000000 | 1.000000 | 1.000000 | 130.000000 | 240.000000 | 0.000000 | 1.000000 | 153.000000 | 0.000000 | 0.800000 | 1.000000 | 0.000000 | 2.000000 | 1.000000 |
| 75% | 61.000000 | 1.000000 | 2.000000 | 140.000000 | 274.500000 | 0.000000 | 1.000000 | 166.000000 | 1.000000 | 1.600000 | 2.000000 | 1.000000 | 3.000000 | 1.000000 |
max | 77.000000 | 1.000000 | 3.000000 | 200.000000 | 564.000000 | 1.000000 | 2.000000 | 202.000000 | 1.000000 | 6.200000 | 2.000000 | 4.000000 | 3.000000 | 1.000000 |
---|
- 年纪:均值54,中位数55,标准差9,说明主要是老年人,偏大
- 静息血压:均值131.62, 成年人一般:正常血压:收缩压 < 120 mmHg,偏大
- 胆固醇:均值246.26,理想水平:小于 200 mg/dL,偏大
- 最高心率:均值149.64,一般静息状态下通常是 60 到 100 次每分钟,偏大
最大值和最小值都可能发生,无异常值
缺失值
python
data.isnull().sum()
age 0
sex 0
cp 0
trestbps 0
chol 0
fbs 0
restecg 0
thalach 0
exang 0
oldpeak 0
slope 0
ca 0
thal 0
target 0
dtype: int64
相关性分析
python
import seaborn as sns
plt.figure(figsize=(20, 15))
sns.heatmap(data.corr(), annot=True, cmap='Greens')
plt.show()
相关系数的等级划分
- 非常弱的相关性:
- 0.00 至 0.19 或 -0.00 至 -0.19
- 解释:几乎不存在线性关系。
- 弱相关性:
- 0.20 至 0.39 或 -0.20 至 -0.39
- 解释:存在一定的线性关系,但较弱。
- 中等相关性:
- 0.40 至 0.59 或 -0.40 至 -0.59
- 解释:有明显的线性关系,但不是特别强。
- 强相关性:
- 0.60 至 0.79 或 -0.60 至 -0.79
- 解释:两个变量之间有较强的线性关系。
- 非常强的相关性:
- 0.80 至 1.00 或 -0.80 至 -1.00
- 解释:几乎完全线性相关,表明两个变量的变化高度一致。
target与chol、没有什么相关性,fbs是分类变量,chol胆固醇是数值型变量,但是从实际角度,这些都有影响,故不剔除特征
4、数据划分
这里先划分为:训练集:测试集 = 9:1
python
from sklearn.model_selection import train_test_split
X = data.iloc[:, :-1]
y = data.iloc[:, -1]
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1, random_state=42)
5、数据标准化
python
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)
# 深度学习、用rnn模型,数据需要3通道,在图片中表示RGB,这里表示1
X_train = X_train.reshape(X_train.shape[0], X_train.shape[1], 1)
X_test = X_test.reshape(X_test.shape[0], X_test.shape[1], 1)
6、转化为张量数据
python
# 假设 y_train, y_test 是 pandas Series 或 DataFrame
# 首先将它们转换为 NumPy 数组
y_train = y_train.values.astype(np.float32)
y_test = y_test.values.astype(np.float32)
batch_size = 32
# unsqueeze (N,) 转换为 (N, 1)
train_dataset = TensorDataset(torch.tensor(X_train, dtype=torch.float32).to(device), torch.tensor(y_train, dtype=torch.float32).unsqueeze(1).to(device))
test_dataset = TensorDataset(torch.tensor(X_test, dtype=torch.float32).to(device), torch.tensor(y_test, dtype=torch.float32).unsqueeze(1).to(device))
train_dl = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_dl = DataLoader(test_dataset, batch_size=batch_size, shuffle=True)
2、创建模型
- 定义一个RNN层
rnn = nn.RNN(input_size=10, hidden_size=20, num_layers=2, nonlinearity='tanh',
bias=True, batch_first=False, dropout=0, bidirectional=False) - input_size: 输入的特征维度
- hidden_size: 隐藏层的特征维度
- num_layers: RNN 层的数量
- nonlinearity: 非线性激活函数 ('tanh' 或 'relu')
- bias: 如果为 False,则内部不含偏置项,默认为 True
- batch_first: 如果为 True,则输入和输出张量提供为 (batch, seq, feature),默认为 False (seq, batch, feature)
- dropout: 如果非零,则除了最后一层,在每层的输出中引入一个 Dropout 层,默认为 0
- bidirectional: 如果为 True,则将成为双向 RNN,默认为 False
python
import torch
import torch.nn as nn
# 创建模型
'''
该问题本质是二分类问题,故最后一层全连接层用激活函数为:sigmoid
模型结构:
RNN:隐藏层200,激活函数:relu
Linear:--> 100(relu) -> 1(sigmoid)
'''
# 创建模型
class Model(nn.Module):
def __init__(self):
super().__init__()
# 在 Keras 中 input_shape=(13, 1) 表示的是, 每个样本有 13 个时间步(seq_length=13),每个时间步有一个特征(input_size=1), 换句话就是一行
self.rnn = nn.RNN(input_size=1, hidden_size=200, num_layers=1, nonlinearity='relu', batch_first=True)
self.fc1 = nn.Linear(200, 100)
self.fc2 = nn.Linear(100, 1)
def forward(self, x):
# 初始化隐藏层状态
h0 = torch.zeros(1, x.size(0), 200).to(device) # (num_layers, batch_size, hidden_size)
# 构建神经网络
x, _ = self.rnn(x, h0) # x: (batch_size, seq_length, hidden_size)
x = x[:, -1, :] # 最后一个时间步作为全连接层的输入, 形状变为:(batch_size, input_size)
x = torch.relu(self.fc1(x))
x = torch.sigmoid(self.fc2(x))
return x
model = Model().to(device)
3、模型训练
1、设置超参数
python
loss_fn = nn.BCELoss()
lr = 1e-4
optimizer = torch.optim.Adam(model.parameters(), lr=lr)
2、设置训练函数
python
def train(dataloader, model, loss_fn, optimizer):
# 总大小
size = len(dataloader.dataset)
# 批次数量
num_batches = len(dataloader)
# 准确率和损失初始化
correct = 0
running_loss = 0.0
for X, y in dataloader:
X, y = X.to(device), y.to(device)
# 模型预测与误差评分
pred = model(X).squeeze() # 去除多余的维度以匹配目标形状
if y.dim() == 2: # 如果目标形状是 [batch_size, 1]
y = y.squeeze() # 将其转换为 [batch_size]
loss = loss_fn(pred, y) # 确保目标形状匹配
# 梯度清零
optimizer.zero_grad()
# 反向传播与梯度更新
loss.backward()
optimizer.step()
# 记录损失
running_loss += loss.item()
# 计算准确率, 二分类和多分类不同
predicted_labels = (pred > 0.5).float() # 使用 0.5 作为阈值
correct += (predicted_labels == y).type(torch.float64).sum().item()
# 计算平均损失和准确率
train_loss = running_loss / num_batches
train_acc = correct / size
return train_acc, train_loss
3、设置测试函数
python
def test(dataloader, model, loss_fn):
# 总大小
size = len(dataloader.dataset)
# 批次数量
num_batches = len(dataloader)
# 准确率和损失初始化
correct = 0
running_loss = 0.0
# 将模型设置为评估模式
model.eval()
with torch.no_grad():
for X, y in dataloader:
X, y = X.to(device), y.to(device)
# 模型预测与误差评分
pred = model(X).squeeze() # 去除多余的维度以匹配目标形状
if y.dim() == 2: # 如果目标形状是 [batch_size, 1]
y = y.squeeze() # 将其转换为 [batch_size]
loss = loss_fn(pred, y) # 确保目标形状匹配
# 记录损失
running_loss += loss.item()
# 计算准确率
predicted_labels = (pred > 0.5).float() # 使用 0.5 作为阈值
correct += (predicted_labels == y).type(torch.float64).sum().item()
# 计算平均损失和准确率
test_loss = running_loss / num_batches
test_acc = correct / size # 转换为百分比
return test_acc, test_loss
4、模型训练
python
train_acc = []
train_loss = []
test_acc = []
test_loss = []
# 定义训练次数
epoches = 100
for epoch in range(epoches):
# 训练
model.train()
epoch_trian_acc, epoch_train_loss = train(train_dl, model, loss_fn, optimizer)
# 测试
model.eval()
epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)
# 记录
train_acc.append(epoch_trian_acc)
train_loss.append(epoch_train_loss)
test_acc.append(epoch_test_acc)
test_loss.append(epoch_test_loss)
template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%, Test_loss:{:.3f}')
print(template.format(epoch+1, epoch_trian_acc*100, epoch_train_loss, epoch_test_acc*100, epoch_test_loss))
Epoch: 1, Train_acc:71.0%, Train_loss:0.689, Test_acc:71.0%, Test_loss:0.688
Epoch: 2, Train_acc:75.0%, Train_loss:0.686, Test_acc:71.0%, Test_loss:0.685
Epoch: 3, Train_acc:75.0%, Train_loss:0.682, Test_acc:71.0%, Test_loss:0.682
Epoch: 4, Train_acc:75.0%, Train_loss:0.678, Test_acc:71.0%, Test_loss:0.678
Epoch: 5, Train_acc:75.0%, Train_loss:0.673, Test_acc:71.0%, Test_loss:0.674
Epoch: 6, Train_acc:75.0%, Train_loss:0.669, Test_acc:71.0%, Test_loss:0.670
Epoch: 7, Train_acc:75.0%, Train_loss:0.661, Test_acc:71.0%, Test_loss:0.664
Epoch: 8, Train_acc:75.4%, Train_loss:0.657, Test_acc:67.7%, Test_loss:0.656
Epoch: 9, Train_acc:77.2%, Train_loss:0.644, Test_acc:67.7%, Test_loss:0.647
Epoch:10, Train_acc:77.6%, Train_loss:0.635, Test_acc:71.0%, Test_loss:0.632
Epoch:11, Train_acc:79.0%, Train_loss:0.615, Test_acc:74.2%, Test_loss:0.613
Epoch:12, Train_acc:79.0%, Train_loss:0.592, Test_acc:77.4%, Test_loss:0.585
Epoch:13, Train_acc:80.5%, Train_loss:0.559, Test_acc:77.4%, Test_loss:0.557
Epoch:14, Train_acc:77.9%, Train_loss:0.536, Test_acc:77.4%, Test_loss:0.532
Epoch:15, Train_acc:78.7%, Train_loss:0.508, Test_acc:74.2%, Test_loss:0.520
Epoch:16, Train_acc:77.9%, Train_loss:0.490, Test_acc:77.4%, Test_loss:0.510
Epoch:17, Train_acc:79.4%, Train_loss:0.482, Test_acc:74.2%, Test_loss:0.510
Epoch:18, Train_acc:79.0%, Train_loss:0.459, Test_acc:74.2%, Test_loss:0.505
Epoch:19, Train_acc:80.9%, Train_loss:0.440, Test_acc:74.2%, Test_loss:0.513
Epoch:20, Train_acc:79.8%, Train_loss:0.426, Test_acc:74.2%, Test_loss:0.522
Epoch:21, Train_acc:78.7%, Train_loss:0.424, Test_acc:74.2%, Test_loss:0.529
Epoch:22, Train_acc:77.6%, Train_loss:0.447, Test_acc:71.0%, Test_loss:0.538
Epoch:23, Train_acc:79.0%, Train_loss:0.441, Test_acc:74.2%, Test_loss:0.553
Epoch:24, Train_acc:80.5%, Train_loss:0.400, Test_acc:74.2%, Test_loss:0.517
Epoch:25, Train_acc:80.9%, Train_loss:0.421, Test_acc:74.2%, Test_loss:0.522
Epoch:26, Train_acc:80.1%, Train_loss:0.396, Test_acc:77.4%, Test_loss:0.539
Epoch:27, Train_acc:79.8%, Train_loss:0.393, Test_acc:77.4%, Test_loss:0.525
Epoch:28, Train_acc:81.2%, Train_loss:0.390, Test_acc:77.4%, Test_loss:0.524
Epoch:29, Train_acc:80.1%, Train_loss:0.378, Test_acc:77.4%, Test_loss:0.543
Epoch:30, Train_acc:80.1%, Train_loss:0.384, Test_acc:80.6%, Test_loss:0.521
Epoch:31, Train_acc:82.0%, Train_loss:0.392, Test_acc:77.4%, Test_loss:0.534
Epoch:32, Train_acc:81.6%, Train_loss:0.371, Test_acc:77.4%, Test_loss:0.513
Epoch:33, Train_acc:83.5%, Train_loss:0.376, Test_acc:77.4%, Test_loss:0.526
Epoch:34, Train_acc:81.6%, Train_loss:0.365, Test_acc:80.6%, Test_loss:0.511
Epoch:35, Train_acc:82.0%, Train_loss:0.383, Test_acc:77.4%, Test_loss:0.521
Epoch:36, Train_acc:83.8%, Train_loss:0.362, Test_acc:80.6%, Test_loss:0.513
Epoch:37, Train_acc:83.8%, Train_loss:0.357, Test_acc:80.6%, Test_loss:0.511
Epoch:38, Train_acc:84.2%, Train_loss:0.360, Test_acc:80.6%, Test_loss:0.511
Epoch:39, Train_acc:84.2%, Train_loss:0.354, Test_acc:80.6%, Test_loss:0.503
Epoch:40, Train_acc:84.9%, Train_loss:0.349, Test_acc:80.6%, Test_loss:0.512
Epoch:41, Train_acc:84.6%, Train_loss:0.371, Test_acc:80.6%, Test_loss:0.503
Epoch:42, Train_acc:84.6%, Train_loss:0.338, Test_acc:80.6%, Test_loss:0.510
Epoch:43, Train_acc:83.5%, Train_loss:0.353, Test_acc:80.6%, Test_loss:0.503
Epoch:44, Train_acc:83.8%, Train_loss:0.351, Test_acc:80.6%, Test_loss:0.500
Epoch:45, Train_acc:84.6%, Train_loss:0.339, Test_acc:80.6%, Test_loss:0.505
Epoch:46, Train_acc:85.7%, Train_loss:0.336, Test_acc:80.6%, Test_loss:0.500
Epoch:47, Train_acc:84.6%, Train_loss:0.358, Test_acc:80.6%, Test_loss:0.503
Epoch:48, Train_acc:84.9%, Train_loss:0.337, Test_acc:80.6%, Test_loss:0.513
Epoch:49, Train_acc:86.0%, Train_loss:0.334, Test_acc:80.6%, Test_loss:0.497
Epoch:50, Train_acc:85.3%, Train_loss:0.341, Test_acc:77.4%, Test_loss:0.513
Epoch:51, Train_acc:84.9%, Train_loss:0.337, Test_acc:80.6%, Test_loss:0.498
Epoch:52, Train_acc:84.9%, Train_loss:0.340, Test_acc:80.6%, Test_loss:0.499
Epoch:53, Train_acc:86.4%, Train_loss:0.328, Test_acc:80.6%, Test_loss:0.497
Epoch:54, Train_acc:84.9%, Train_loss:0.331, Test_acc:80.6%, Test_loss:0.502
Epoch:55, Train_acc:84.2%, Train_loss:0.343, Test_acc:77.4%, Test_loss:0.521
Epoch:56, Train_acc:84.6%, Train_loss:0.346, Test_acc:80.6%, Test_loss:0.486
Epoch:57, Train_acc:85.3%, Train_loss:0.351, Test_acc:77.4%, Test_loss:0.506
Epoch:58, Train_acc:85.7%, Train_loss:0.317, Test_acc:80.6%, Test_loss:0.491
Epoch:59, Train_acc:84.9%, Train_loss:0.327, Test_acc:77.4%, Test_loss:0.502
Epoch:60, Train_acc:86.0%, Train_loss:0.321, Test_acc:80.6%, Test_loss:0.503
Epoch:61, Train_acc:87.1%, Train_loss:0.340, Test_acc:80.6%, Test_loss:0.498
Epoch:62, Train_acc:85.3%, Train_loss:0.319, Test_acc:77.4%, Test_loss:0.501
Epoch:63, Train_acc:86.0%, Train_loss:0.317, Test_acc:77.4%, Test_loss:0.503
Epoch:64, Train_acc:86.4%, Train_loss:0.315, Test_acc:80.6%, Test_loss:0.493
Epoch:65, Train_acc:86.0%, Train_loss:0.323, Test_acc:80.6%, Test_loss:0.499
Epoch:66, Train_acc:86.8%, Train_loss:0.322, Test_acc:77.4%, Test_loss:0.518
Epoch:67, Train_acc:87.1%, Train_loss:0.308, Test_acc:80.6%, Test_loss:0.494
Epoch:68, Train_acc:86.8%, Train_loss:0.335, Test_acc:80.6%, Test_loss:0.507
Epoch:69, Train_acc:86.4%, Train_loss:0.307, Test_acc:80.6%, Test_loss:0.499
Epoch:70, Train_acc:86.4%, Train_loss:0.306, Test_acc:80.6%, Test_loss:0.505
Epoch:71, Train_acc:86.0%, Train_loss:0.314, Test_acc:77.4%, Test_loss:0.510
Epoch:72, Train_acc:86.8%, Train_loss:0.315, Test_acc:80.6%, Test_loss:0.495
Epoch:73, Train_acc:86.0%, Train_loss:0.311, Test_acc:77.4%, Test_loss:0.507
Epoch:74, Train_acc:86.8%, Train_loss:0.308, Test_acc:77.4%, Test_loss:0.512
Epoch:75, Train_acc:86.0%, Train_loss:0.316, Test_acc:80.6%, Test_loss:0.497
Epoch:76, Train_acc:85.7%, Train_loss:0.311, Test_acc:80.6%, Test_loss:0.504
Epoch:77, Train_acc:86.8%, Train_loss:0.307, Test_acc:77.4%, Test_loss:0.505
Epoch:78, Train_acc:86.4%, Train_loss:0.303, Test_acc:77.4%, Test_loss:0.508
Epoch:79, Train_acc:87.5%, Train_loss:0.296, Test_acc:80.6%, Test_loss:0.507
Epoch:80, Train_acc:87.1%, Train_loss:0.310, Test_acc:80.6%, Test_loss:0.508
Epoch:81, Train_acc:87.5%, Train_loss:0.297, Test_acc:77.4%, Test_loss:0.503
Epoch:82, Train_acc:87.5%, Train_loss:0.288, Test_acc:77.4%, Test_loss:0.527
Epoch:83, Train_acc:87.1%, Train_loss:0.293, Test_acc:80.6%, Test_loss:0.502
Epoch:84, Train_acc:87.1%, Train_loss:0.295, Test_acc:80.6%, Test_loss:0.508
Epoch:85, Train_acc:87.1%, Train_loss:0.283, Test_acc:80.6%, Test_loss:0.509
Epoch:86, Train_acc:87.1%, Train_loss:0.282, Test_acc:77.4%, Test_loss:0.514
Epoch:87, Train_acc:87.5%, Train_loss:0.278, Test_acc:80.6%, Test_loss:0.511
Epoch:88, Train_acc:87.5%, Train_loss:0.287, Test_acc:80.6%, Test_loss:0.513
Epoch:89, Train_acc:88.6%, Train_loss:0.308, Test_acc:77.4%, Test_loss:0.521
Epoch:90, Train_acc:87.9%, Train_loss:0.296, Test_acc:80.6%, Test_loss:0.512
Epoch:91, Train_acc:87.5%, Train_loss:0.287, Test_acc:77.4%, Test_loss:0.522
Epoch:92, Train_acc:87.5%, Train_loss:0.285, Test_acc:80.6%, Test_loss:0.512
Epoch:93, Train_acc:87.9%, Train_loss:0.287, Test_acc:80.6%, Test_loss:0.512
Epoch:94, Train_acc:88.2%, Train_loss:0.280, Test_acc:77.4%, Test_loss:0.530
Epoch:95, Train_acc:88.6%, Train_loss:0.283, Test_acc:80.6%, Test_loss:0.512
Epoch:96, Train_acc:89.3%, Train_loss:0.280, Test_acc:80.6%, Test_loss:0.516
Epoch:97, Train_acc:87.9%, Train_loss:0.276, Test_acc:77.4%, Test_loss:0.514
Epoch:98, Train_acc:88.6%, Train_loss:0.270, Test_acc:77.4%, Test_loss:0.526
Epoch:99, Train_acc:89.0%, Train_loss:0.269, Test_acc:80.6%, Test_loss:0.517
Epoch:100, Train_acc:88.6%, Train_loss:0.266, Test_acc:80.6%, Test_loss:0.521
5、结果展示
python
import matplotlib.pyplot as plt
#隐藏警告
import warnings
warnings.filterwarnings("ignore") #忽略警告信息
plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号
plt.rcParams['figure.dpi'] = 100 #分辨率
epoch_length = range(epoches)
plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)
plt.plot(epoch_length, train_acc, label='Train Accuaray')
plt.plot(epoch_length, test_acc, label='Test Accuaray')
plt.legend(loc='lower right')
plt.title('Accurary')
plt.subplot(1, 2, 2)
plt.plot(epoch_length, train_loss, label='Train Loss')
plt.plot(epoch_length, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Loss')
plt.show()
测试集表现不是很理想,合理尝试变化不同的批次,会有不同效果
6、模型评估
python
# 评估:返回的是自己在model.compile中设置,这里为accuracy
test_acc, test_loss = test(test_dl, model, loss_fn)
print("socre[loss, accuracy]: ", test_acc, test_loss) # 返回为两个,一个是loss,一个是accuracy
socre[loss, accuracy]: 0.8064516129032258 0.5212066173553467