【论文笔记】NEFTune: Noisy Embeddings Improve Instruction Finetuning

🍎个人主页:小嗷犬的个人主页

🍊个人网站:小嗷犬的技术小站

🥭个人信条:为天地立心,为生民立命,为往圣继绝学,为万世开太平。


基本信息

标题 : NEFTune: Noisy Embeddings Improve Instruction Finetuning
作者 : Neel Jain, Ping-yeh Chiang, Yuxin Wen, John Kirchenbauer, Hong-Min Chu, Gowthami Somepalli, Brian R. Bartoldson, Bhavya Kailkhura, Avi Schwarzschild, Aniruddha Saha, Micah Goldblum, Jonas Geiping, Tom Goldstein
发表 : ICLR 2023
arXiv : https://arxiv.org/abs/2310.05914

摘要

我们表明,通过简单的增强,语言模型微调可以得到改进,有时甚至可以显著提高。

NEFTune在训练过程中向嵌入向量添加噪声。

使用Alpaca对LLaMA-2-7B进行标准微调,在AlpacaEval上的成绩为29.79%,而使用带噪声的嵌入时,成绩上升至64.69%。NEFTune在现代指令数据集上也优于强大的基线。

使用Evol-Instruct训练的模型提高了10%,ShareGPT提高了8%,OpenPlatypus提高了8%。

即使是经过RLHF进一步精炼的强大模型,如LLaMA-2-Chat,也能从NEFTune的额外训练中受益。

简介

AlpacaEval中LLaMA-2-7B模型在各种数据集上经过微调(含和不含NEFTune)的胜率百分比。

NEFTune在这些数据集上均带来了巨大的性能提升,展示了生成答案的对话质量提升。

NEFTune: Noisy Embedding Instruction Fine Tuning

指令模型(Instruction models)是在包含指令和响应配对的数据集上训练的。每一步 NEFTune 的训练过程通过从数据集中抽取一个指令,并将其token转换为嵌入向量开始。NEFTune 的不同之处在于,它在标准训练基础上向嵌入向量中添加了一个随机噪声向量。该噪声通过抽取独立同分布(iid)的均匀分布值生成,范围为 [ − 1 , 1 ] [-1, 1] [−1,1]。然后将整个噪声向量按因子 α / L d \alpha / \sqrt{Ld} α/Ld 进行缩放,其中 L L L 是序列长度, d d d 是嵌入维度, α \alpha α 是一个可调参数。

这种缩放规则来源于对抗性机器学习(adversarial ML)的相关文献,并产生了一个欧几里得期望幅度约为 α / 3 \alpha / \sqrt{3} α/3 的随机向量。算法 1 详细描述了我们的方法。

实验

总结与局限

NEFTune的成功指出了算法和正则化在LLM训练中常被忽视的重要性。与已经研究了多年正则化和过拟合的计算机视觉社区不同,LLM社区倾向于使用旨在优化器稳定性的标准化训练循环,而不是泛化。在这种环境中,LLM研究人员已经将数据集和模型扩展作为前进的主要途径。鉴于NEFTune的持续收益以及在小指令数据集上过度拟合的趋势,似乎在LLM环境中重新审视正则化是值得的。

我们的研究有几个局限性。我们将AlpacaEval作为LLM指令跟随能力的核心衡量标准,这受到单个裁判(GPT-4)的偏见。此外,由于计算资源有限,我们无法在多个数据集上验证NEFTune在70B变体上的成功,并且大多数NEFTune运行必须依赖于固定的超参数而不是扫描。最后,尽管我们进行了实证研究,但我们并没有对NEFTune为何有效有一个明确的了解。

相关推荐
cooldream200920 分钟前
华为云Flexus+DeepSeek征文|基于华为云Flexus X和DeepSeek-R1打造个人知识库问答系统
人工智能·华为云·dify
Blossom.1183 小时前
使用Python和Scikit-Learn实现机器学习模型调优
开发语言·人工智能·python·深度学习·目标检测·机器学习·scikit-learn
scdifsn4 小时前
动手学深度学习12.7. 参数服务器-笔记&练习(PyTorch)
pytorch·笔记·深度学习·分布式计算·数据并行·参数服务器
DFminer5 小时前
【LLM】fast-api 流式生成测试
人工智能·机器人
郄堃Deep Traffic5 小时前
机器学习+城市规划第十四期:利用半参数地理加权回归来实现区域带宽不同的规划任务
人工智能·机器学习·回归·城市规划
海盗儿6 小时前
Attention Is All You Need (Transformer) 以及Transformer pytorch实现
pytorch·深度学习·transformer
GIS小天6 小时前
AI+预测3D新模型百十个定位预测+胆码预测+去和尾2025年6月7日第101弹
人工智能·算法·机器学习·彩票
阿部多瑞 ABU6 小时前
主流大语言模型安全性测试(三):阿拉伯语越狱提示词下的表现与分析
人工智能·安全·ai·语言模型·安全性测试
cnbestec6 小时前
Xela矩阵三轴触觉传感器的工作原理解析与应用场景
人工智能·线性代数·触觉传感器
不爱写代码的玉子6 小时前
HALCON透视矩阵
人工智能·深度学习·线性代数·算法·计算机视觉·矩阵·c#