自动驾驶控制算法-横纵向控制仿真

本文是学习自动驾驶控制算法第十二讲 横纵向综合控制的学习笔记。

1. 概览

仿真模型图如下图所示,主要有四个模块:

模块1是Carsim的车辆模型,输入是油门、制动、转向,输出是车辆位置、速度、横摆角、横摆角速度等;

模块2是用于计算仿真的轨迹,输出轨迹信息,包括位置、速度、加速度、曲率等;

模块3是用于计算横向控制的转角以及纵向控制所需的位置误差 e s e_s es和速度 s ˙ \dot{s} s˙,输入是车辆运动状态和规划的轨迹信息;

模块4是用于计算纵向控制的油门和刹车,输入主要是位置误差 e s e_s es和速度 s ˙ \dot{s} s˙、规划的速度和加速度;

2. 模块2-仿真轨迹

给定起点和终点的位置坐标和车辆运动状态,使用五次多项式计算起点到终点的轨迹,如下图所示:

已知车辆起点状态
x s t a r t = [ x ( 0 ) , x ˙ ( 0 ) , x ¨ ( 0 ) ] \begin{equation} x_{start}=[x(0),\dot{x}(0),\ddot{x}(0)] \end{equation} xstart=[x(0),x˙(0),x¨(0)]
y s t a r t = [ y ( 0 ) , y ˙ ( 0 ) , y ¨ ( 0 ) ] \begin{equation} y_{start}=[y(0),\dot{y}(0),\ddot{y}(0)] \end{equation} ystart=[y(0),y˙(0),y¨(0)]

和终点状态

x e n d = [ x ( T ) , x ˙ ( T ) , x ¨ ( T ) ] \begin{equation} x_{end}=[x(T),\dot{x}(T),\ddot{x}(T)] \end{equation} xend=[x(T),x˙(T),x¨(T)]
y e n d = [ y ( T ) , y ˙ ( T ) , y ¨ ( T ) ] \begin{equation} y_{end}=[y(T),\dot{y}(T),\ddot{y}(T)] \end{equation} yend=[y(T),y˙(T),y¨(T)]

其中 T T T表示仿真周期,起点到终点的轨迹方程满足:
x ( t ) = a 5 t 5 + a 4 t 4 + a 3 t 3 + a 2 t 2 + a 1 t + a 0 \begin{equation} x(t)=a_5t^5+a_4t^4+a_3t^3+a_2t^2+a_1t+a_0 \end{equation} x(t)=a5t5+a4t4+a3t3+a2t2+a1t+a0
y ( t ) = b 5 t 5 + b 4 t 4 + b 3 t 3 + b 2 t 2 + b 1 t + b 0 \begin{equation} y(t)=b_5t^5+b_4t^4+b_3t^3+b_2t^2+b_1t+b_0 \end{equation} y(t)=b5t5+b4t4+b3t3+b2t2+b1t+b0

将1-4代入5~6可求解得到系数 a i ( i = 0 ... 5 ) a_i\ (i=0\dots5) ai (i=0...5)和 b i ( i = 0 ... 5 ) b_i\ (i=0\dots5) bi (i=0...5)的值,有了 x ( t ) x(t) x(t)和 y ( t ) y(t) y(t),也就能求得轨迹上的速度、加速度、曲率等信息。

3. 模块3

横向控制详细介绍参考前面章节介绍。

其输出项中的 e s e_s es、 e d e_d ed和 s ˙ \dot{s} s˙如下图所示,其中蓝色点表示车辆当前位置在轨迹上的匹配点(仿真中直接使用模块2的输出):

考虑到转向不足,加入了 e d e_d ed来控制补偿转向。

4. 模块4

模块4内部就是上一节所说的双PID纵向控制,这里输入的车速 v v v和发动机(电机)转速 r p m rpm rpm仅用于车辆模型的功率仿真计算。

5. 仿真结果

5.1 case1

x s t a r t = [ 0 , 0 , 0 ] x_{start}=[0,0,0] xstart=[0,0,0], x e n d = [ 100 , 0 , 0 ] x_{end}=[100,0,0] xend=[100,0,0]
y s t a r t = [ 0 , 0 , 0 ] y_{start}=[0,0,0] ystart=[0,0,0], y e n d = [ 10 , 0 , 0 ] y_{end}=[10,0,0] yend=[10,0,0]
T = 20 s T=20s T=20s

如下图所示,自车位置 x x x和 y y y与规划的轨迹几乎完全重合:

5.2 case2

在case1的基础上,将时间减少, T = 10 s T=10s T=10s,如下图所示,对轨迹的跟踪偏差较大,这是因为时间变短,PID输出的加速度要求太大,超出了设计的最大值

5.3 case3

也可以仿真速度比较高的场景
x s t a r t = [ 0 , 20 , 0 ] x_{start}=[0,20,0] xstart=[0,20,0], x e n d = [ 100 , 0 , 0 ] x_{end}=[100,0,0] xend=[100,0,0]
y s t a r t = [ 0 , 0 , 0 ] y_{start}=[0,0,0] ystart=[0,0,0], y e n d = [ 10 , 0 , 0 ] y_{end}=[10,0,0] yend=[10,0,0]
T = 10 s T=10s T=10s

相关推荐
Together_CZ19 分钟前
BloombergGPT: A Large Language Model for Finance——面向金融领域的大语言模型
人工智能·语言模型·金融·finance·bloomberggpt·面向金融领域的大语言模型·金融大模型
asyxchenchong88821 分钟前
基于R语言的DICE模型实践技术应用
人工智能
AI大模型learner26 分钟前
探索Whisper:从原理到实际应用的解析
人工智能·深度学习·机器学习
gs801404 小时前
JuiceFS 详解:一款为云原生设计的高性能分布式文件系统
机器学习·云原生·对象存储·大数据分析·分布式文件系统·juicefs·高性能存储
风虎云龙科研服务器5 小时前
深度学习GPU服务器推荐:打造高效运算平台
服务器·人工智能·深度学习
石臻臻的杂货铺5 小时前
OpenAI CEO 奥特曼发长文《反思》
人工智能·chatgpt
说私域6 小时前
社群团购平台的运营模式革新:以开源AI智能名片链动2+1模式商城小程序为例
人工智能·小程序
说私域6 小时前
移动电商的崛起与革新:以开源AI智能名片2+1链动模式S2B2C商城小程序为例的深度剖析
人工智能·小程序
cxr8287 小时前
智能体(Agent)如何具备自我决策能力的机理与实现方法
人工智能·自然语言处理
WBingJ7 小时前
机器学习基础-支持向量机SVM
人工智能·机器学习·支持向量机