【外文原版书阅读】《机器学习前置知识》1.线性代数的重要性,初识向量以及向量加法

目录

​编辑

​编辑

[1.Chapter 2 Why Linear Algebra?](#1.Chapter 2 Why Linear Algebra?)

[2.Chapter 3 What Is a Vector?](#2.Chapter 3 What Is a Vector?)


个人主页:Icomi

大家好,我是Icomi,本专栏是我阅读外文原版书《Before Machine Learning》对于文章中我认为能够增进线性代数与机器学习之间的理解的内容的一个输出,希望能够帮助到各位更加深刻的理解线性代数与机器学习。若各位对本系列内容感兴趣,可以给我点个关注跟进内容,我将持续更新。

本专栏与我的《PyTorch入门》结合将理解更深刻。

专栏地址:PyTorch入门

1.Chapter 2 Why Linear Algebra?

There are a lot of us pressing buttons. Still, only a few of us are building them. If you want to succeed as a data scientist, it would be better to take a button-builder path. What this means is that you will have to learn mathematics.

我们很多人都只会按按钮,却只有少数人在制造按钮。如果你想成为一名成功的数据科学家,最好选择成为 "造按钮的人"。这意味着你必须学习数学。

Linear algebra is essential to forming a complete understanding of machine learning. The applications are countless, and the tech-niques from this discipline belong to a shared collection of algorithms widely used in artificial intelligence. Its properties and methods allow for faster computation of complex systems and the extraction of hidden relationships in sets of data.

线性代数对于全面理解机器学习至关重要。它的应用数不胜数,该学科的技术属于人工智能领域广泛使用的算法集合。线性代数的特性和方法能够更快地计算复杂系统,并提取数据集中隐藏的关系。

2.Chapter 3 What Is a Vector?

(1)

You can think of a vector in simple terms as a list of numbers where the position of each item in this structure matters. In machine learning, this will often be the case. For example, if you are analysing the height and weight of a class of students, in this domain, a twodimensional vector will represent each student:

简单来说,你可以把向量看作是一个数字列表,其中每个元素在这个结构中的位置都很重要。在机器学习中,通常就是这种情况。例如,如果你要分析一个班级学生的身高和体重,在这个领域,一个二维向量可以代表每个学生:

这里V1代表一名学生的身高,V2代表同一名学生的体重。通常情况下,如果你要为另一名学生定义另一个向量,各量值的位置应该保持一致。所以第一个元素是身高,第二个是体重。这种看待向量的方式常被称为 "计算机科学定义"。我不确定这种说法是否准确,但它确实是一种运用向量的方式。另一种与线性代数联系更紧密的对这些元素的解释是,把向量看作是一个箭头,其方向由坐标决定。它的起点位于原点,也就是像、平面这样的坐标系中的(0,0)点。括号里的数字就是向量的坐标,用于表明箭头的落点:

(2)向量加法:

We can explore a visualization to understand these so-called translations better and solidify this concept of vector addition:One can utilize vector addition in many real-life scenarios. For example, my cousin has a kid with these long arms who can throw a golf ball at 60 km/h:One day we were driving a car north at 60 km/h. From the back seat, he threw this golf ball through the window directly to the east. If we want to comprehend the direction and velocity of the ball relative to the ground, we can use vector addition. From vector

我们可以通过可视化的方式来更好地理解这些所谓的平移,并强化向量加法这一概念:向量加法在许多现实场景中都能派上用场。例如,我表哥家孩子胳膊很长,能以每小时 60 公里的速度扔出高尔夫球。有一天,我们以每小时 60 公里的速度向北驾车行驶。他从后座将这个高尔夫球直接朝车窗外向东扔出。如果我们想了解球相对于地面的方向和速度,我们可以使用向量加法。从向量...... (这里 "From vector" 之后原文似乎不完整 )通过向量加法,我们可以知道球会向东北方向运动。如果你想计算球的速度,可以使用勾股定理,即 。这是一个简单的例子,并且忽略了风的阻力。

相关推荐
2501_941149111 分钟前
人工智能驱动下的边缘物联网革新,打造未来全球智能互联新格局
人工智能·物联网
没头脑的男大5 分钟前
Unet+Transformer脑肿瘤分割检测
人工智能·深度学习·transformer
Elias不吃糖9 分钟前
整合了c++里面常用的STL及其常用API
开发语言·c++·学习·stl
AI即插即用10 分钟前
即插即用涨点系列(十四)2025 SOTA | Efficient ViM:基于“隐状态混合SSD”与“多阶段融合”的轻量级视觉 Mamba 新标杆
人工智能·pytorch·深度学习·计算机视觉·视觉检测·transformer
AY呀11 分钟前
DeepSeek:探索AI大模型与开发工具的全景指南
后端·机器学习
1***815334 分钟前
免费的自然语言处理教程,NLP入门
人工智能·自然语言处理
Juchecar39 分钟前
从微观到宏观:视觉和听觉的区别
计算机视觉
算家计算1 小时前
Gemini 3.0重磅发布!技术全面突破:百万上下文、全模态推理与开发者生态重构
人工智能·资讯·gemini
说私域1 小时前
“开源链动2+1模式AI智能名片S2B2C商城小程序”赋能同城自媒体商家营销创新研究
人工智能·小程序·开源
m0_635129261 小时前
内外具身智能VLA模型深度解析
人工智能·机器学习