神经网络|(七)概率论基础知识-贝叶斯公式

【1】引言

前序我们已经了解了一些基础知识。

古典概型:有限个元素参与抽样,每个元素被抽样的概率相等。

条件概率 :在某条件已经达成的前提下,新事件发生的概率。实际计算的时候,应注意区分,如果是计算综合概率,比如A已经发生时,B发生的概率,其实计算的目标是P(AB)。条件概率公式的通用表达式为P(B|A)=P(AB)/P(A),乘法表达式为P(AB)=P(B|A)P(A)

全概率公式 :全概率公式综合了所有条件,这些条件彼此互斥又总体互补。求全概率,是计算所有可能条件下的综合概率,全概率是条件概率的扩展。全概率公式的通用表达式为P(A)=P(AB1)+P(AB2)+...++P(ABn)(i=1,2...,Bi代表彼此互斥但总体互补的条件)

【2】贝叶斯公式

在此基础上,如果将条件概率和全概率的公式进行组合,展开P(A),P(AB)可分解为很多P(ABi)(i=1,2...,Bi代表彼此互斥但总体互补的条件),这样就会获得贝叶斯公式通用表达式:

P(Bi|A)=P(ABi)/P(A)=P(A|Bi)P(Bi)/P(AB1)+P(AB2)+...++P(ABn)(i=1,2...,Bi代表彼此互斥但总体互补的条件)

实际上,贝叶斯公式就是考虑彼此互斥但总体互补的条件们各自所占的比例,各自所占的比例,。

因为P(B1UB2U...UBn)=1,所以单独求一个Bi所占的比例,尽管加上了一个A作为条件来约束,但无法改变Bi们彼此互斥但总体互补的现实基础。

综上所述,贝叶斯本身就是算各部分所占比例。

【3】总结

回顾了贝叶斯公式的推导过程,了解了贝叶斯公式的本质意义。贝叶斯公式是全概率公式和条件概率公式的组合形式,贝叶斯公式实际上是在计算彼此互斥但总体互补的条件们各自所占的比例。

相关推荐
C++、Java和Python的菜鸟3 天前
第六章 统计初步
算法·机器学习·概率论
神齐的小马7 天前
机器学习 [白板推导](十)[马尔可夫链蒙特卡洛法]
人工智能·机器学习·概率论
量化风云9 天前
『量化人的概率 03』PDF is all you need
python·金融·pdf·概率论·量化交易·量化课程
BOB_BOB_BOB_13 天前
【ee类保研面试】数学类---概率论
面试·职场和发展·概率论·保研
Yingjun Mo13 天前
概率论角度: Laplace 算子和分数阶 Laplace 算子
概率论
CS创新实验室14 天前
《机器学习数学基础》补充资料:泰勒定理与余项
人工智能·机器学习·概率论·泰勒定理·泰勒展开·余项
EQUINOX122 天前
如何理解泊松分布
概率论
幻风_huanfeng23 天前
人工智能之数学基础:概率论之韦恩图的应用
概率论·韦恩图
金色光环1 个月前
切比雪夫不等式的理解以及推导【超详细笔记】
概率论
幻风_huanfeng1 个月前
人工智能之数学基础:概率论和数理统计在机器学习的地位
人工智能·神经网络·线性代数·机器学习·概率论