神经网络|(七)概率论基础知识-贝叶斯公式

【1】引言

前序我们已经了解了一些基础知识。

古典概型:有限个元素参与抽样,每个元素被抽样的概率相等。

条件概率 :在某条件已经达成的前提下,新事件发生的概率。实际计算的时候,应注意区分,如果是计算综合概率,比如A已经发生时,B发生的概率,其实计算的目标是P(AB)。条件概率公式的通用表达式为P(B|A)=P(AB)/P(A),乘法表达式为P(AB)=P(B|A)P(A)

全概率公式 :全概率公式综合了所有条件,这些条件彼此互斥又总体互补。求全概率,是计算所有可能条件下的综合概率,全概率是条件概率的扩展。全概率公式的通用表达式为P(A)=P(AB1)+P(AB2)+...++P(ABn)(i=1,2...,Bi代表彼此互斥但总体互补的条件)

【2】贝叶斯公式

在此基础上,如果将条件概率和全概率的公式进行组合,展开P(A),P(AB)可分解为很多P(ABi)(i=1,2...,Bi代表彼此互斥但总体互补的条件),这样就会获得贝叶斯公式通用表达式:

P(Bi|A)=P(ABi)/P(A)=P(A|Bi)P(Bi)/P(AB1)+P(AB2)+...++P(ABn)(i=1,2...,Bi代表彼此互斥但总体互补的条件)

实际上,贝叶斯公式就是考虑彼此互斥但总体互补的条件们各自所占的比例,各自所占的比例,。

因为P(B1UB2U...UBn)=1,所以单独求一个Bi所占的比例,尽管加上了一个A作为条件来约束,但无法改变Bi们彼此互斥但总体互补的现实基础。

综上所述,贝叶斯本身就是算各部分所占比例。

【3】总结

回顾了贝叶斯公式的推导过程,了解了贝叶斯公式的本质意义。贝叶斯公式是全概率公式和条件概率公式的组合形式,贝叶斯公式实际上是在计算彼此互斥但总体互补的条件们各自所占的比例。

相关推荐
微小冷2 天前
二关节机器人系统模型推导
线性代数·机器人·概率论·推导·拉格朗日函数·二关节机器人·机器人控制系统的设计
软件开发技术深度爱好者3 天前
概率中“都发生”和“至少一个”问题的解答
概率论·数学广角
FF-Studio5 天前
【硬核数学】3. AI如何应对不确定性?概率论为模型注入“灵魂”《从零构建机器学习、深度学习到LLM的数学认知》
大数据·人工智能·深度学习·机器学习·数学建模·自然语言处理·概率论
如果你想拥有什么先让自己配得上拥有15 天前
概率论中的生日问题,违背直觉?如何计算? 以及从人性金融的角度分析如何违背直觉的?
金融·概率论
云博客-资源宝15 天前
Excel函数大全
机器学习·excel·概率论
爱学习的capoo17 天前
【解析法与几何法在阻尼比设计】自控
线性代数·机器学习·概率论
TomcatLikeYou19 天前
概率论中的基本定义(事件,期望,信息量,香农熵等)
深度学习·机器学习·概率论
phoenix@Capricornus21 天前
期望最大化(EM)算法的推导——Q函数
算法·机器学习·概率论
Algo-hx22 天前
概率论的基本概念:开启不确定性世界的数学之旅
概率论
Algo-hx22 天前
随机变量及其分布:概率论的量化核心
概率论