神经网络|(七)概率论基础知识-贝叶斯公式

【1】引言

前序我们已经了解了一些基础知识。

古典概型:有限个元素参与抽样,每个元素被抽样的概率相等。

条件概率 :在某条件已经达成的前提下,新事件发生的概率。实际计算的时候,应注意区分,如果是计算综合概率,比如A已经发生时,B发生的概率,其实计算的目标是P(AB)。条件概率公式的通用表达式为P(B|A)=P(AB)/P(A),乘法表达式为P(AB)=P(B|A)P(A)

全概率公式 :全概率公式综合了所有条件,这些条件彼此互斥又总体互补。求全概率,是计算所有可能条件下的综合概率,全概率是条件概率的扩展。全概率公式的通用表达式为P(A)=P(AB1)+P(AB2)+...++P(ABn)(i=1,2...,Bi代表彼此互斥但总体互补的条件)

【2】贝叶斯公式

在此基础上,如果将条件概率和全概率的公式进行组合,展开P(A),P(AB)可分解为很多P(ABi)(i=1,2...,Bi代表彼此互斥但总体互补的条件),这样就会获得贝叶斯公式通用表达式:

P(Bi|A)=P(ABi)/P(A)=P(A|Bi)P(Bi)/P(AB1)+P(AB2)+...++P(ABn)(i=1,2...,Bi代表彼此互斥但总体互补的条件)

实际上,贝叶斯公式就是考虑彼此互斥但总体互补的条件们各自所占的比例,各自所占的比例,。

因为P(B1UB2U...UBn)=1,所以单独求一个Bi所占的比例,尽管加上了一个A作为条件来约束,但无法改变Bi们彼此互斥但总体互补的现实基础。

综上所述,贝叶斯本身就是算各部分所占比例。

【3】总结

回顾了贝叶斯公式的推导过程,了解了贝叶斯公式的本质意义。贝叶斯公式是全概率公式和条件概率公式的组合形式,贝叶斯公式实际上是在计算彼此互斥但总体互补的条件们各自所占的比例。

相关推荐
Niuguangshuo1 天前
EM算法详解:解密“鸡生蛋“的机器学习困局
算法·机器学习·概率论
sunfove2 天前
贝叶斯模型 (Bayesian Model) 的直觉与硬核原理
人工智能·机器学习·概率论
sunfove2 天前
上帝的骰子:概率论核心概念、分布与极限定理的直觉图解
概率论
张祥6422889043 天前
数理统计基础一
人工智能·机器学习·概率论
Zhibang Yue3 天前
非参数统计基础1——Pearson检验
统计·概率论·数理统计
ballball~~4 天前
正态(高斯)分布(Gaussian distribution)
算法·概率论
AI科技星4 天前
引力场与磁场的几何统一:磁矢势方程的第一性原理推导、验证与诠释
数据结构·人工智能·经验分享·线性代数·算法·计算机视觉·概率论
Niuguangshuo5 天前
高斯分布的加权和 vs. 加权混合
概率论
Niuguangshuo5 天前
随机变量及其分布:从离散到连续,深入理解概率模型的基础
概率论
Z_Jiang5 天前
金融投资 的 小游戏:海边躺平
经验分享·金融·概率论·程序员创富