GWO优化LSBooST回归预测matlab

灰狼优化算法(Grey Wolf Optimizer,简称 GWO),是一种群智能优化算法,由澳大利亚格里菲斯大学的 Mirjalii 等人于 2014 年提出。该算法的设计灵感源自灰狼群体的捕食行为,核心思想是模仿灰狼社会的结构与行为模式。

在本研究中,选用 Excel 股票预测数据,将其按照 8:1:1 的比例划分为训练集、验证集和测试集。通过利用 GWO 对 LSBooST 进行优化,应用于回归预测,以此提升模型性能。

代码采用模块化结构,依据功能模块清晰划分,包括数据准备、参数设置、算法处理以及结果展示等部分,这不仅提高了代码的可读性,也增强了其可维护性。在数据处理方面,流程清晰明确,先对数据进行标准化处理,如 Zscore 标准化,再划分为训练集、验证集和测试集,有效保证了模型训练的准确性与可靠性。

为了更直观地呈现模型预测效果,方便用户理解算法及模型性能,采用了结果可视化手段,具体通过绘制 GWO 寻优过程收敛曲线,以及训练集、验证集和测试集的真实标签与预测标签的曲线对比图来实现。

同时输出多个评价指标

平均绝对误差(MAE)

平均相对误差(MAPE)

均方误差(MSE)

均方根误差(RMSE)

R方系数(R2)

代码有中文介绍。

算法设计、毕业设计、期刊专利!感兴趣可以联系我。

🏆代码获取方式1:

私信博主

🏆代码获取方式2

利用同等价值的matlab代码兑换博主的matlab代码

先提供matlab代码运行效果图给博主评估其价值,可以的话,就可以进行兑换。

相关推荐
Ghost-Face几秒前
图论基础
算法
默归1 分钟前
分治法——二分答案
python·算法
专注API从业者13 分钟前
基于 Node.js 的淘宝 API 接口开发:快速构建异步数据采集服务
大数据·前端·数据库·数据挖掘·node.js
麻雀无能为力33 分钟前
python自学笔记14 NumPy 线性代数
笔记·python·numpy
金井PRATHAMA1 小时前
大脑的藏宝图——神经科学如何为自然语言处理(NLP)的深度语义理解绘制新航线
人工智能·自然语言处理
Y|1 小时前
GBDT(Gradient Boosting Decision Tree,梯度提升决策树)总结梳理
决策树·机器学习·集成学习·推荐算法·boosting
大学生毕业题目1 小时前
毕业项目推荐:28-基于yolov8/yolov5/yolo11的电塔危险物品检测识别系统(Python+卷积神经网络)
人工智能·python·yolo·cnn·pyqt·电塔·危险物品
星期天要睡觉1 小时前
深度学习——卷积神经网络CNN(原理:基本结构流程、卷积层、池化层、全连接层等)
人工智能·深度学习·cnn
一枝小雨1 小时前
【数据结构】排序算法全解析
数据结构·算法·排序算法
略知java的景初1 小时前
深入解析十大经典排序算法原理与实现
数据结构·算法·排序算法