BERT 大模型

BERT 大模型

BERT 特点 :

  • 优点 : 在语言理解相关任务中表现很好
  • 缺点 : 更适合 NLU 任务,不适合 NLG 任务

BERT 架构:双向编码模型 :

  • Embedding 模块
  • Transformer 模块
  • 预微调模块

Embedding

Embedding 组成 :

  • Token Embeddings:词嵌入张量,第一个单词是CLS标志,用于分类任务
  • Segment Embeddings:句子分段嵌入张量,用于两个句子为输入的预训练任务
  • Position Embeddings:位置编码张量
  • 输出张量 : 这3个张量的直接加和结果

Transformer

Transformer :

  • 只用 Transformer 的 Encoder 部分 , 舍弃 Decoder
  • 预训练任务集中在训练 Transformer 中

预微调模块

  • 根据任务不同需求调整最后一层
  • 对于sequence-level的分类任务,取第一个[CLS]token的final hidden state,加一层全连接层后进行softmax预测标签

预训练任务

MaskedLM(带 mask 的语言模型训练)

  • 输入句子中随机抽取 15% 的 token 作为训练对象
  • 80% 概率用 MASK 标记替换 token ,10% 概率用随机单词替换 token,10% 概率保持 token 不变

NextSentencePrediction(下一句话预测任务)

  • 输入句子对 (A , B) ,预测句子B是否是句子A的真实下一句
  • 50% 的 B 是原始文本中真实跟随A的下一句(正样本),50% 的 B 是随机抽取的一句话(负样本)
相关推荐
安替-AnTi13 小时前
PandaWiki:AI 驱动的开源知识库系
人工智能·embedding·检索增强·知识库·rag·查询优化
迦蓝叶14 小时前
JAiRouter v1.0.0 正式发布:企业级 AI 服务网关的开源解决方案
java·运维·人工智能·网关·spring·ai·开源
长空任鸟飞_阿康14 小时前
Node.js 核心模块详解:fs 模块原理与应用
前端·人工智能·ai·node.js
可触的未来,发芽的智生14 小时前
触摸未来2025-10-18:生成文字的小宇宙矩阵溯源
人工智能·python·神经网络·程序人生·自然语言处理
武子康14 小时前
AI-调查研究-106-具身智能 机器人学习数据采集工具和手段:传感器、API、遥操作、仿真与真人示教全流程
人工智能·深度学习·机器学习·ai·系统架构·机器人·具身智能
Python智慧行囊14 小时前
图像处理-opencv(一)
人工智能·opencv·计算机视觉
StarPrayers.14 小时前
损失函数(Loss Function)、反向传播(Backward Propagation)和优化器(Optimizer)学习笔记
人工智能·笔记·深度学习·学习
IT_陈寒14 小时前
Vite 5个隐藏技巧让你的项目构建速度提升50%,第3个太香了!
前端·人工智能·后端
孤廖14 小时前
吃透 C++ 栈和队列:stack/queue/priority_queue 用法 + 模拟 + STL 标准实现对比
java·开发语言·数据结构·c++·人工智能·深度学习·算法
麦麦麦造15 小时前
有了 MCP,为什么Claude 还要推出 Skills?
人工智能·aigc·ai编程