LLM论文笔记 19: On Limitations of the Transformer Architecture

  • Arxiv日期:2024.2.26
  • 机构:Columbia University / Google

关键词

  • Transformer架构
  • 幻觉问题
  • 数学谜题

核心结论

  1. Transformer 无法可靠地计算函数组合问题
  1. Transformer 的计算能力受限于信息瓶颈
  1. CoT 可以减少 Transformer 计算错误的概率,但无法根本性突破其计算能力的上限

  2. **CoT 需要生成指数级增长的 token。**CoT 只能通过增加大量的 token 来弥补 Transformer 的计算瓶颈,而不能从根本上提升 Transformer 的计算能力。

主要方法

核心目标是分析 Transformer 在计算能力上的根本性限制 ,特别是在 函数组合(Function Composition)、数学推理、逻辑推理 等任务上的表现。

通过 通信复杂度**(Communication Complexity)** 和 计算复杂度(Computational Complexity) 的分析

参考:https://zhuanlan.zhihu.com/p/682254725

注:本系列不包括基础的知识点讲解,为笔记/大纲性质而非教程,用于论文知识点和思想和快速记忆和回顾,更多细节建议阅读论文原文

相关推荐
编程小白_正在努力中10 分钟前
第1章 机器学习基础
人工智能·机器学习
wyw000035 分钟前
目标检测之SSD
人工智能·目标检测·计算机视觉
芯思路38 分钟前
STM32开发学习笔记之三【按键】
笔记·stm32·学习
AKAMAI38 分钟前
圆满循环:Akamai 的演进如何为 AI 推理时代奠定基石
人工智能·云计算
Lips6111 小时前
2026.1.11力扣刷题笔记
笔记·算法·leetcode
幻云20101 小时前
AI自动化编排:从入门到精通(基于Dify构建AI智能系统)
运维·人工智能·自动化
CoderJia程序员甲1 小时前
GitHub 热榜项目 - 日榜(2026-1-13)
人工智能·ai·大模型·github·ai教程
梦梦代码精1 小时前
《全栈开源智能体:终结企业AI拼图时代》
人工智能·后端·深度学习·小程序·前端框架·开源·语音识别
suyong_yq1 小时前
RUHMI & RA8P1 教程 Part4 - 使用 RUHMI 转换 AI 模型文件
人工智能·ai·嵌入式·arm
程序员欣宸1 小时前
LangChain4j实战之十三:函数调用,低级API版本
java·人工智能·ai·langchain4j