LLM论文笔记 19: On Limitations of the Transformer Architecture

  • Arxiv日期:2024.2.26
  • 机构:Columbia University / Google

关键词

  • Transformer架构
  • 幻觉问题
  • 数学谜题

核心结论

  1. Transformer 无法可靠地计算函数组合问题
  1. Transformer 的计算能力受限于信息瓶颈
  1. CoT 可以减少 Transformer 计算错误的概率,但无法根本性突破其计算能力的上限

  2. **CoT 需要生成指数级增长的 token。**CoT 只能通过增加大量的 token 来弥补 Transformer 的计算瓶颈,而不能从根本上提升 Transformer 的计算能力。

主要方法

核心目标是分析 Transformer 在计算能力上的根本性限制 ,特别是在 函数组合(Function Composition)、数学推理、逻辑推理 等任务上的表现。

通过 通信复杂度**(Communication Complexity)** 和 计算复杂度(Computational Complexity) 的分析

参考:https://zhuanlan.zhihu.com/p/682254725

注:本系列不包括基础的知识点讲解,为笔记/大纲性质而非教程,用于论文知识点和思想和快速记忆和回顾,更多细节建议阅读论文原文

相关推荐
众链网络13 分钟前
你的Prompt还有很大提升
人工智能·prompt·ai写作·ai工具·ai智能体
汀沿河15 分钟前
2 大模型高效参数微调;prompt tunning
人工智能·深度学习·prompt
路溪非溪22 分钟前
机器学习之线性回归
人工智能·机器学习·线性回归
搞笑的秀儿2 小时前
信息新技术
大数据·人工智能·物联网·云计算·区块链
阿里云大数据AI技术2 小时前
OpenSearch 视频 RAG 实践
数据库·人工智能·llm
XMAIPC_Robot2 小时前
基于ARM+FPGA的光栅尺精密位移加速度测试解决方案
arm开发·人工智能·fpga开发·自动化·边缘计算
X_StarX2 小时前
【Unity笔记02】订阅事件-自动开门
笔记·学习·unity·游戏引擎·游戏开发·大学生
加油吧zkf2 小时前
YOLO目标检测数据集类别:分类与应用
人工智能·计算机视觉·目标跟踪
MingYue_SSS2 小时前
开关电源抄板学习
经验分享·笔记·嵌入式硬件·学习
Blossom.1183 小时前
机器学习在智能制造业中的应用:质量检测与设备故障预测
人工智能·深度学习·神经网络·机器学习·机器人·tensorflow·sklearn