【工具】survex一个解释机器学习生存模型的R包

文章目录

介绍

由于其灵活性和优越的性能,机器学习模型经常补充并优于传统的统计生存模型。然而,由于缺乏用户友好的工具来解释其内部操作和预测原理,它们的广泛采用受到阻碍。为了解决这个问题,我们引入了survex R包,它提供了一个内聚框架,通过应用可解释的人工智能技术来解释任何生存模型。所提出的软件的功能包括理解和诊断生存模型,这可以导致它们的改进。通过揭示决策过程的洞察力,例如变量效应和重要性,survex能够评估模型的可靠性和检测偏差。因此,可以在诸如生物医学研究和保健应用等敏感领域促进透明度和责任。

Due to their flexibility and superior performance, machine learning models frequently complement and outperform traditional statistical survival models. However, their widespread adoption is hindered by a lack of user-friendly tools to explain their internal operations and prediction rationales. To tackle this issue, we introduce the survex R package, which provides a cohesive framework for explaining any survival model by applying explainable artificial intelligence techniques. The capabilities of the proposed software encompass understanding and diagnosing survival models, which can lead to their improvement. By revealing insights into the decision-making process, such as variable effects and importances, survex enables the assessment of model reliability and the detection of biases. Thus, transparency and responsibility may be promoted in sensitive areas, such as biomedical research and healthcare applications.

代码

案例

r 复制代码
library(survex)
library(survival)
library(ranger)

vet <- survival::veteran

cph <- coxph(Surv(time, status) ~ ., data = vet, x = TRUE, model = TRUE)
exp <- explain(cph, data = vet[, -c(3,4)], y = Surv(vet$time, vet$status))
#> Preparation of a new explainer is initiated 
#>   -> model label       :  coxph (  default  ) 
#>   -> data              :  137  rows  6  cols 
#>   -> target variable   :  137  values ( 128 events and 9 censored ) 
#>   -> times             :  50 unique time points , min = 1.5 , median survival time = 80 , max = 999 
#>   -> times             :  (  generated from y as uniformly distributed survival quantiles based on Kaplan-Meier estimator  ) 
#>   -> predict function  :  predict.coxph with type = 'risk' will be used (  default  ) 
#>   -> predict survival function  :  predictSurvProb.coxph will be used (  default  ) 
#>   -> predict cumulative hazard function  :  -log(predict_survival_function) will be used (  default  ) 
#>   -> model_info        :  package survival , ver. 3.7.0 , task survival (  default  ) 
#>   A new explainer has been created!


shap <- model_survshap(exp, veteran[c(1:4, 17:20, 110:113, 126:129), -c(3,4)])

plot(shap)

参考

  • survex: an R package for explaining machine learning survival models
相关推荐
司南OpenCompass17 小时前
Gemini-3-Pro 强势登顶,GPT-5.1 转向“创作型选手”?丨多模态模型11月最新榜单揭晓
人工智能·多模态模型·大模型评测·司南评测·大模型测评
qq_1601448718 小时前
2025年北京地区人工智能认证报考指南:以CAIE为例
人工智能
算家计算18 小时前
AI真的懂你!阿里发布Qwen3-Omni-Flash 全模态大模型:超强交互,人设任选
人工智能·算法·机器学习
森诺Alyson18 小时前
前沿技术借鉴研讨-2025.12.9(胎儿面部异常检测/超声标准平面检测/宫内生长受限)
论文阅读·人工智能·经验分享·深度学习·论文笔记
亚马逊云开发者18 小时前
使用Amazon Bedrock和Pipecat构建低延迟智能语音Agent
人工智能
yesyesyoucan18 小时前
一键换背景,创意无界限——智能图片背景生成与替换平台,解锁视觉设计新可能
人工智能
monster000w18 小时前
容器云2.7pytorch版本安装问题
人工智能·pytorch·python
云雾J视界18 小时前
当AI下沉到MCU:嵌入式开发者的“能力护城河”正在被重写
人工智能·单片机·嵌入式硬件·mcu·freertos·岗位技能
Coding茶水间18 小时前
基于深度学习的遥感地面物体检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
图像处理·人工智能·深度学习·yolo·目标检测·计算机视觉
databook18 小时前
搞懂“元数据”:给数据办一张“身份证”
数据结构·数据分析