【工具】survex一个解释机器学习生存模型的R包

文章目录

介绍

由于其灵活性和优越的性能,机器学习模型经常补充并优于传统的统计生存模型。然而,由于缺乏用户友好的工具来解释其内部操作和预测原理,它们的广泛采用受到阻碍。为了解决这个问题,我们引入了survex R包,它提供了一个内聚框架,通过应用可解释的人工智能技术来解释任何生存模型。所提出的软件的功能包括理解和诊断生存模型,这可以导致它们的改进。通过揭示决策过程的洞察力,例如变量效应和重要性,survex能够评估模型的可靠性和检测偏差。因此,可以在诸如生物医学研究和保健应用等敏感领域促进透明度和责任。

Due to their flexibility and superior performance, machine learning models frequently complement and outperform traditional statistical survival models. However, their widespread adoption is hindered by a lack of user-friendly tools to explain their internal operations and prediction rationales. To tackle this issue, we introduce the survex R package, which provides a cohesive framework for explaining any survival model by applying explainable artificial intelligence techniques. The capabilities of the proposed software encompass understanding and diagnosing survival models, which can lead to their improvement. By revealing insights into the decision-making process, such as variable effects and importances, survex enables the assessment of model reliability and the detection of biases. Thus, transparency and responsibility may be promoted in sensitive areas, such as biomedical research and healthcare applications.

代码

案例

r 复制代码
library(survex)
library(survival)
library(ranger)

vet <- survival::veteran

cph <- coxph(Surv(time, status) ~ ., data = vet, x = TRUE, model = TRUE)
exp <- explain(cph, data = vet[, -c(3,4)], y = Surv(vet$time, vet$status))
#> Preparation of a new explainer is initiated 
#>   -> model label       :  coxph (  default  ) 
#>   -> data              :  137  rows  6  cols 
#>   -> target variable   :  137  values ( 128 events and 9 censored ) 
#>   -> times             :  50 unique time points , min = 1.5 , median survival time = 80 , max = 999 
#>   -> times             :  (  generated from y as uniformly distributed survival quantiles based on Kaplan-Meier estimator  ) 
#>   -> predict function  :  predict.coxph with type = 'risk' will be used (  default  ) 
#>   -> predict survival function  :  predictSurvProb.coxph will be used (  default  ) 
#>   -> predict cumulative hazard function  :  -log(predict_survival_function) will be used (  default  ) 
#>   -> model_info        :  package survival , ver. 3.7.0 , task survival (  default  ) 
#>   A new explainer has been created!


shap <- model_survshap(exp, veteran[c(1:4, 17:20, 110:113, 126:129), -c(3,4)])

plot(shap)

参考

  • survex: an R package for explaining machine learning survival models
相关推荐
yLDeveloper1 天前
致深度学习小白:一文理解拟合问题与经典解决方案
机器学习·dive into deep learning
图灵信徒1 天前
R语言第七章线性回归模型
数据挖掘·数据分析·r语言·线性回归
Mintopia1 天前
Claude Code CLI UI
人工智能·aigc·全栈
Mr.Winter`1 天前
基于Proto3和单例模式的系统参数配置模块设计(附C++案例实现)
c++·人工智能·单例模式·机器人
Mintopia1 天前
🌐 动态网络环境下的 WebAIGC 断点续传与容错技术
前端·人工智能·aigc
qinyia1 天前
WisdomSSH解决因未使用Docker资源导致的磁盘空间不足问题
运维·服务器·人工智能·后端·docker·ssh·github
Stark-C1 天前
凭实力出圈,头戴耳机的六边形战士!性价比拉满的iKF Mars实测
人工智能
paperxie_xiexuo1 天前
面向多场景演示需求的AI辅助生成工具体系研究:十类平台的功能分型、技术实现与合规应用分析
大数据·人工智能·powerpoint·ppt
aneasystone本尊1 天前
学习 LiteLLM 的缓存系统
人工智能
CNRio1 天前
人工智能基础架构与算力之2 异构算力合池技术:打破资源壁垒的分布式 AI 部署方案
人工智能·分布式