【工具】survex一个解释机器学习生存模型的R包

文章目录

介绍

由于其灵活性和优越的性能,机器学习模型经常补充并优于传统的统计生存模型。然而,由于缺乏用户友好的工具来解释其内部操作和预测原理,它们的广泛采用受到阻碍。为了解决这个问题,我们引入了survex R包,它提供了一个内聚框架,通过应用可解释的人工智能技术来解释任何生存模型。所提出的软件的功能包括理解和诊断生存模型,这可以导致它们的改进。通过揭示决策过程的洞察力,例如变量效应和重要性,survex能够评估模型的可靠性和检测偏差。因此,可以在诸如生物医学研究和保健应用等敏感领域促进透明度和责任。

Due to their flexibility and superior performance, machine learning models frequently complement and outperform traditional statistical survival models. However, their widespread adoption is hindered by a lack of user-friendly tools to explain their internal operations and prediction rationales. To tackle this issue, we introduce the survex R package, which provides a cohesive framework for explaining any survival model by applying explainable artificial intelligence techniques. The capabilities of the proposed software encompass understanding and diagnosing survival models, which can lead to their improvement. By revealing insights into the decision-making process, such as variable effects and importances, survex enables the assessment of model reliability and the detection of biases. Thus, transparency and responsibility may be promoted in sensitive areas, such as biomedical research and healthcare applications.

代码

案例

r 复制代码
library(survex)
library(survival)
library(ranger)

vet <- survival::veteran

cph <- coxph(Surv(time, status) ~ ., data = vet, x = TRUE, model = TRUE)
exp <- explain(cph, data = vet[, -c(3,4)], y = Surv(vet$time, vet$status))
#> Preparation of a new explainer is initiated 
#>   -> model label       :  coxph (  default  ) 
#>   -> data              :  137  rows  6  cols 
#>   -> target variable   :  137  values ( 128 events and 9 censored ) 
#>   -> times             :  50 unique time points , min = 1.5 , median survival time = 80 , max = 999 
#>   -> times             :  (  generated from y as uniformly distributed survival quantiles based on Kaplan-Meier estimator  ) 
#>   -> predict function  :  predict.coxph with type = 'risk' will be used (  default  ) 
#>   -> predict survival function  :  predictSurvProb.coxph will be used (  default  ) 
#>   -> predict cumulative hazard function  :  -log(predict_survival_function) will be used (  default  ) 
#>   -> model_info        :  package survival , ver. 3.7.0 , task survival (  default  ) 
#>   A new explainer has been created!


shap <- model_survshap(exp, veteran[c(1:4, 17:20, 110:113, 126:129), -c(3,4)])

plot(shap)

参考

  • survex: an R package for explaining machine learning survival models
相关推荐
飞Link11 小时前
【计算机视觉】深度学习医疗影像实战:PathMNIST 数据集全解析
人工智能·深度学习·计算机视觉
wangmengxxw11 小时前
SpringAi-memory
人工智能·大模型·memory·springai
装不满的克莱因瓶11 小时前
【Dify实战】情感陪伴机器人 从零制作教程
人工智能·ai·agent·agi·dify·智能体
2501_9413331011 小时前
【计算机视觉系列】:钢结构构件识别与定位_yolo11-seg-RVB改进
人工智能·计算机视觉
belldeep11 小时前
比较 RPA 与 AI Agent 的异同,两者有何关系?
人工智能·ai·agent·rpa
智能化咨询11 小时前
(80页PPT)毕XX集团管理咨询项目项目总结汇报(附下载方式)
大数据·人工智能
yu_anan11111 小时前
CTC Prefix Score计算
算法·机器学习
Pyeako11 小时前
深度学习--PyTorch框架&优化器&激活函数
人工智能·pytorch·python·深度学习·优化器·激活函数·梯度爆炸与消失
sww_102611 小时前
智能问数系统(三):生成数据报告
人工智能·html5
夜勤月11 小时前
数据中台的最后一块拼图:利用 MCP 统一企业所有异构数据源,打造 AI 原生数据底座
人工智能