【工具】survex一个解释机器学习生存模型的R包

文章目录

介绍

由于其灵活性和优越的性能,机器学习模型经常补充并优于传统的统计生存模型。然而,由于缺乏用户友好的工具来解释其内部操作和预测原理,它们的广泛采用受到阻碍。为了解决这个问题,我们引入了survex R包,它提供了一个内聚框架,通过应用可解释的人工智能技术来解释任何生存模型。所提出的软件的功能包括理解和诊断生存模型,这可以导致它们的改进。通过揭示决策过程的洞察力,例如变量效应和重要性,survex能够评估模型的可靠性和检测偏差。因此,可以在诸如生物医学研究和保健应用等敏感领域促进透明度和责任。

Due to their flexibility and superior performance, machine learning models frequently complement and outperform traditional statistical survival models. However, their widespread adoption is hindered by a lack of user-friendly tools to explain their internal operations and prediction rationales. To tackle this issue, we introduce the survex R package, which provides a cohesive framework for explaining any survival model by applying explainable artificial intelligence techniques. The capabilities of the proposed software encompass understanding and diagnosing survival models, which can lead to their improvement. By revealing insights into the decision-making process, such as variable effects and importances, survex enables the assessment of model reliability and the detection of biases. Thus, transparency and responsibility may be promoted in sensitive areas, such as biomedical research and healthcare applications.

代码

案例

r 复制代码
library(survex)
library(survival)
library(ranger)

vet <- survival::veteran

cph <- coxph(Surv(time, status) ~ ., data = vet, x = TRUE, model = TRUE)
exp <- explain(cph, data = vet[, -c(3,4)], y = Surv(vet$time, vet$status))
#> Preparation of a new explainer is initiated 
#>   -> model label       :  coxph (  default  ) 
#>   -> data              :  137  rows  6  cols 
#>   -> target variable   :  137  values ( 128 events and 9 censored ) 
#>   -> times             :  50 unique time points , min = 1.5 , median survival time = 80 , max = 999 
#>   -> times             :  (  generated from y as uniformly distributed survival quantiles based on Kaplan-Meier estimator  ) 
#>   -> predict function  :  predict.coxph with type = 'risk' will be used (  default  ) 
#>   -> predict survival function  :  predictSurvProb.coxph will be used (  default  ) 
#>   -> predict cumulative hazard function  :  -log(predict_survival_function) will be used (  default  ) 
#>   -> model_info        :  package survival , ver. 3.7.0 , task survival (  default  ) 
#>   A new explainer has been created!


shap <- model_survshap(exp, veteran[c(1:4, 17:20, 110:113, 126:129), -c(3,4)])

plot(shap)

参考

  • survex: an R package for explaining machine learning survival models
相关推荐
Elastic 中国社区官方博客4 分钟前
Elastic:DevRel 通讯 — 2026 年 1 月
大数据·数据库·人工智能·elasticsearch·搜索引擎·ai·全文检索
寻星探路6 分钟前
【算法专题】滑动窗口:从“无重复字符”到“字母异位词”的深度剖析
java·开发语言·c++·人工智能·python·算法·ai
盈创力和20078 分钟前
智慧城市中智能井盖的未来演进:从边缘感知节点到城市智能体
人工智能·智慧城市·智慧市政·智慧水务·智能井盖传感器·综合管廊
njsgcs11 分钟前
ppo 找出口模型 训练笔记
人工智能·笔记
萤丰信息13 分钟前
从 “钢筋水泥” 到 “数字神经元”:北京 AI 原点社区重构城市进化新逻辑
java·大数据·人工智能·安全·重构·智慧城市·智慧园区
吨吨不打野20 分钟前
CS336——2. PyTorch, resource accounting
人工智能·pytorch·python
柳安忆23 分钟前
OpenAgents 中文文档总结报告(上手导向版)
人工智能
dehuisun23 分钟前
大模型介绍与分类
人工智能
shangjian00728 分钟前
AI大模型-卷积神经网络-对卷积的理解
人工智能·神经网络·卷积
sanduo11240 分钟前
AI 原生(AI-Native)&架构极简主义
人工智能·架构·ai-native