3D-DIC与机器学习协同模拟材料应力-应变本构行为研究

"

人工神经网络具有较强的非线性拟合能力,是一种可以从数据中学习并进行预测的强大手段。最近,机器学习方法被用于研究各种力学问题,例如通过图像的像素处理,通过训练和验证来预测材料的弹性常数。

"

背景介绍

卷积神经网络(ECNN)用于超弹性材料的本构建模,需要测量的量(即位移、应变和外部施加的力)被作为训练的输入数据,而应力被视为内部变量。使用加载时变形不均匀的单个试样,采用新拓三维XTDIC三维全场应变测量系统,测试全场位移、应变数据,可以获得大量的训练数据,极大的方便了数据的生成。

研究内容

基于机器学习的材料本构模型,需要一个大型的多轴应力-应变曲线数据库,用于训练和交叉验证,需要一个从数据库中训练参数的网络算法,以及模型预测等。一般来说,应力-应变曲线应尽可能广泛地覆盖应力和应变空间,以提供可靠的训练。

因此,必须进行大量不同加载条件下的试验。新拓三维XTDIC三维全场应变测量系统,基于数字图像相关法(DIC),可测量试样在加载下的位移场、应变场以及生成应力-应变曲线。特别是对于新兴新材料,基于机器学习的本构建模,生成应力-应变曲线数据库,可以有效减少试验次数和成本,结合实验验证确保准确性。

基于ECNN的超弹性材料本构建模框架。(a)受外载荷作用的非均匀变形试样,通过DIC测量其应变场;(b)利用ECNN提取应变对应的应力,得到应力-应变本构行为。

ECNN的结构。(a)输入是应变,应力被视为受平衡的内部变量,训练针对外部施加的力;(b)采用群卷积将内部变量与输出应力关联起来。

对于试样的力学性能测试,采用新拓三维XTDIC三维全场应变测量系统,其全场应变、应力-应变曲线数据是可以测量的,DIC设备可与试验机联机,其外部施加的力也是可以直接获取的。

研究的挑战在于提取非均匀变形中的空间应力分量。采用卷积神经网络,每个材料点的测量应变和每个步骤对应的外力构成一组输入数据,相应的应力分量作为未知的内部变量处理,作为输出。通过对ECNN进行训练,获取内部变量,即应力与应变之间的关系,即应力-应变本构行为。

数据生成与验证

为了对所开发的ECNN进行数据演示,采用带中心孔的双轴加载方形板的二维有限元(FE)模型,采用新拓三维XTDIC三维全场应变测量系统进行应变场模拟实验测量。故意引入的孔使得板的变形不均匀,产生更丰富的应力和应变信息。

FEM与ECNN预测加载μ1=0.05和μ2=0.1时的von Mises应力的相对误差。

ECNN的训练

应力是ECNN的输出量而不是输入量,并被视为满足平衡方程约束的内变量。训练是借助XTDIC三维全场应变测量系统所测应变和试验机加载外力进行的。

模型FEM预测应力与训练ECNN预测应力的对比。FEM预测的应力不用于训练ECNN

ECNN的验证

在已知应变场的情况下,用训练好的ECNN也可以提取同一材料不同的局部应力场,并显示FEM和ECNN预测之间的总体比较,同样,所有的数据点都接近理想的回归线。

FEM预测的所有应力集与训练后的ECNN模型比较

研究结论

一般来说,材料的应力应变响应知识,对于其本构模型的发展是必不可少的。数值和DIC实验结果表明,对于给定的局部应变,ECNN能够提取出相应的应力分量,训练后的ECNN能够提取出相应的应力分量。

在训练框架中,采用加载时具有非均匀变形的试样,通过新拓三维XTDIC三维全场应变测量系统,获得训练所需的位移、应变以及应力-应变曲线数据,可用于神经网络训练,通过在ECNN中加入平衡方程弱形式的约束,可以提取应力,训练后的ECNN服务于本构建模,可替代基于方程的传统超弹性材料本构模型。

相关推荐
董厂长2 小时前
langchain :记忆组件混淆概念澄清 & 创建Conversational ReAct后显示指定 记忆组件
人工智能·深度学习·langchain·llm
G皮T6 小时前
【人工智能】ChatGPT、DeepSeek-R1、DeepSeek-V3 辨析
人工智能·chatgpt·llm·大语言模型·deepseek·deepseek-v3·deepseek-r1
九年义务漏网鲨鱼6 小时前
【大模型学习 | MINIGPT-4原理】
人工智能·深度学习·学习·语言模型·多模态
元宇宙时间6 小时前
Playfun即将开启大型Web3线上活动,打造沉浸式GameFi体验生态
人工智能·去中心化·区块链
开发者工具分享6 小时前
文本音频违规识别工具排行榜(12选)
人工智能·音视频
产品经理独孤虾7 小时前
人工智能大模型如何助力电商产品经理打造高效的商品工业属性画像
人工智能·机器学习·ai·大模型·产品经理·商品画像·商品工业属性
老任与码7 小时前
Spring AI Alibaba(1)——基本使用
java·人工智能·后端·springaialibaba
蹦蹦跳跳真可爱5897 小时前
Python----OpenCV(图像増强——高通滤波(索贝尔算子、沙尔算子、拉普拉斯算子),图像浮雕与特效处理)
人工智能·python·opencv·计算机视觉
雷羿 LexChien7 小时前
从 Prompt 管理到人格稳定:探索 Cursor AI 编辑器如何赋能 Prompt 工程与人格风格设计(上)
人工智能·python·llm·编辑器·prompt
两棵雪松8 小时前
如何通过向量化技术比较两段文本是否相似?
人工智能