3D-DIC与机器学习协同模拟材料应力-应变本构行为研究

"

人工神经网络具有较强的非线性拟合能力,是一种可以从数据中学习并进行预测的强大手段。最近,机器学习方法被用于研究各种力学问题,例如通过图像的像素处理,通过训练和验证来预测材料的弹性常数。

"

背景介绍

卷积神经网络(ECNN)用于超弹性材料的本构建模,需要测量的量(即位移、应变和外部施加的力)被作为训练的输入数据,而应力被视为内部变量。使用加载时变形不均匀的单个试样,采用新拓三维XTDIC三维全场应变测量系统,测试全场位移、应变数据,可以获得大量的训练数据,极大的方便了数据的生成。

研究内容

基于机器学习的材料本构模型,需要一个大型的多轴应力-应变曲线数据库,用于训练和交叉验证,需要一个从数据库中训练参数的网络算法,以及模型预测等。一般来说,应力-应变曲线应尽可能广泛地覆盖应力和应变空间,以提供可靠的训练。

因此,必须进行大量不同加载条件下的试验。新拓三维XTDIC三维全场应变测量系统,基于数字图像相关法(DIC),可测量试样在加载下的位移场、应变场以及生成应力-应变曲线。特别是对于新兴新材料,基于机器学习的本构建模,生成应力-应变曲线数据库,可以有效减少试验次数和成本,结合实验验证确保准确性。

基于ECNN的超弹性材料本构建模框架。(a)受外载荷作用的非均匀变形试样,通过DIC测量其应变场;(b)利用ECNN提取应变对应的应力,得到应力-应变本构行为。

ECNN的结构。(a)输入是应变,应力被视为受平衡的内部变量,训练针对外部施加的力;(b)采用群卷积将内部变量与输出应力关联起来。

对于试样的力学性能测试,采用新拓三维XTDIC三维全场应变测量系统,其全场应变、应力-应变曲线数据是可以测量的,DIC设备可与试验机联机,其外部施加的力也是可以直接获取的。

研究的挑战在于提取非均匀变形中的空间应力分量。采用卷积神经网络,每个材料点的测量应变和每个步骤对应的外力构成一组输入数据,相应的应力分量作为未知的内部变量处理,作为输出。通过对ECNN进行训练,获取内部变量,即应力与应变之间的关系,即应力-应变本构行为。

数据生成与验证

为了对所开发的ECNN进行数据演示,采用带中心孔的双轴加载方形板的二维有限元(FE)模型,采用新拓三维XTDIC三维全场应变测量系统进行应变场模拟实验测量。故意引入的孔使得板的变形不均匀,产生更丰富的应力和应变信息。

FEM与ECNN预测加载μ1=0.05和μ2=0.1时的von Mises应力的相对误差。

ECNN的训练

应力是ECNN的输出量而不是输入量,并被视为满足平衡方程约束的内变量。训练是借助XTDIC三维全场应变测量系统所测应变和试验机加载外力进行的。

模型FEM预测应力与训练ECNN预测应力的对比。FEM预测的应力不用于训练ECNN

ECNN的验证

在已知应变场的情况下,用训练好的ECNN也可以提取同一材料不同的局部应力场,并显示FEM和ECNN预测之间的总体比较,同样,所有的数据点都接近理想的回归线。

FEM预测的所有应力集与训练后的ECNN模型比较

研究结论

一般来说,材料的应力应变响应知识,对于其本构模型的发展是必不可少的。数值和DIC实验结果表明,对于给定的局部应变,ECNN能够提取出相应的应力分量,训练后的ECNN能够提取出相应的应力分量。

在训练框架中,采用加载时具有非均匀变形的试样,通过新拓三维XTDIC三维全场应变测量系统,获得训练所需的位移、应变以及应力-应变曲线数据,可用于神经网络训练,通过在ECNN中加入平衡方程弱形式的约束,可以提取应力,训练后的ECNN服务于本构建模,可替代基于方程的传统超弹性材料本构模型。

相关推荐
kisshuan1239628 分钟前
【深度学习】使用RetinaNet+X101-32x4d_FPN_GHM模型实现茶芽检测与识别_1
人工智能·深度学习
Learn Beyond Limits40 分钟前
解构语义:从词向量到神经分类|Decoding Semantics: Word Vectors and Neural Classification
人工智能·算法·机器学习·ai·分类·数据挖掘·nlp
崔庆才丨静觅1 小时前
0代码生成4K高清图!ACE Data Platform × SeeDream 专属方案:小白/商家闭眼冲
人工智能·api
qq_356448372 小时前
机器学习基本概念与梯度下降
人工智能
水如烟2 小时前
孤能子视角:关系性学习,“喂饭“的小孩认知
人工智能
徐_长卿2 小时前
2025保姆级微信AI群聊机器人教程:教你如何本地打造私人和群聊机器人
人工智能·机器人
XyX——2 小时前
【福利教程】一键解锁 ChatGPT / Gemini / Spotify 教育权益!TG 机器人全自动验证攻略
人工智能·chatgpt·机器人
十二AI编程3 小时前
Anthropic 封杀 OpenCode,OpenAI 闪电接盘:AI 编程生态的 48 小时闪电战
人工智能·chatgpt
CCC:CarCrazeCurator3 小时前
从 APA 到 AVP:汽车自动泊车系统技术演进与产业发展深度研究
人工智能