【数字图像处理】立体视觉信息提取

双目立体视觉原理

设一个为参考平面,一个为目标平面。增加了一个摄像头后,P与Q在目标面T上有分别的成像点

双目立体视觉:从两个不同的位置观察同一物体,用三角测量原理计算摄像机到该物体的距离的 方法

原理:三角测量

计算:

相机焦距 f

左右相机基线 b

视差 d :需要知道左相机的每个像素点(xl, yl)和右相机中对应点(xr, yr)的对应关系

双目相机标定

立体相机标定用于确定立体相机对中相机的内参以及相对位置

得到两个相机的内外参数、单应矩阵

极线与视差计算

极线:

极线约束:在一个图像平面上,所有的外极线都交于外极点

外极平面:通过两个摄像机中心和场景特征点的平面

外极线:外极平面与图像平面的交线

外极点:两台摄像机中心的连线与图像平面的交点

相机C1,C2如果不是在同一直线上:对两张图片用单应矩阵变换

互相平行

图像匹配

对应点应该是在极线附近,搜索范围适当放宽

判断对应点时的问题:

(1)失真与噪声

(2)镜面反射

(3)透视失真

(4)透视缩放

图像"灰度"匹配:通过利用某种相似性度量,如相关函数、协方差函数、差平方和、差绝对值和等测度极值,判定两幅图像中的对应关系

图像"特征"匹配:通过分别提取两个或多个图像的特征(点、线、面等特征),对特征进行参数描述,然后运用所描述的参数来进行匹配

"双目立体视觉"测距步骤

Step 1-确定摄像机的相对几何位置和有关参数,即摄像机的标定(Calibration)

Step 2-寻找在两幅图像中都便于区分的特征,或用于匹配的 基元

Step 3-把左、右两幅图像中的有关特征进行匹配,即解决特征匹配的方法问题

Step 4-根据视差计算成像物体相对摄像机的距离

"双目立体视觉"应用特点

对相机硬件要求低,成本低

对环境光照非常敏感

不适用于单调缺乏纹理的场景

计算复杂度高,需要逐像素计算匹配

相机基线限制了测量范围:基线越大,测量范围越远

相关推荐
华奥系科技18 分钟前
智慧水务发展迅猛:从物联网架构到AIoT系统的跨越式升级
人工智能·物联网·智慧城市
R²AIN SUITE18 分钟前
MCP协议重构AI Agent生态:万能插槽如何终结工具孤岛?
人工智能
b***251128 分钟前
动力电池点焊机:驱动电池焊接高效与可靠的核心力量|比斯特自动化
人工智能·科技·自动化
Gyoku Mint43 分钟前
机器学习×第二卷:概念下篇——她不再只是模仿,而是开始决定怎么靠近你
人工智能·python·算法·机器学习·pandas·ai编程·matplotlib
小和尚同志1 小时前
通俗易懂的 MCP 概念入门
人工智能·aigc
dudly1 小时前
大语言模型评测体系全解析(下篇):工具链、学术前沿与实战策略
人工智能·语言模型
zzlyx991 小时前
AI大数据模型如何与thingsboard物联网结合
人工智能·物联网
说私域2 小时前
定制开发开源AI智能名片驱动下的海报工厂S2B2C商城小程序运营策略——基于社群口碑传播与子市场细分的实证研究
人工智能·小程序·开源·零售
HillVue2 小时前
AI,如何重构理解、匹配与决策?
人工智能·重构
skywalk81632 小时前
市面上哪款AI开源软件做ppt最好?
人工智能·powerpoint