【数字图像处理】立体视觉信息提取

双目立体视觉原理

设一个为参考平面,一个为目标平面。增加了一个摄像头后,P与Q在目标面T上有分别的成像点

双目立体视觉:从两个不同的位置观察同一物体,用三角测量原理计算摄像机到该物体的距离的 方法

原理:三角测量

计算:

相机焦距 f

左右相机基线 b

视差 d :需要知道左相机的每个像素点(xl, yl)和右相机中对应点(xr, yr)的对应关系

双目相机标定

立体相机标定用于确定立体相机对中相机的内参以及相对位置

得到两个相机的内外参数、单应矩阵

极线与视差计算

极线:

极线约束:在一个图像平面上,所有的外极线都交于外极点

外极平面:通过两个摄像机中心和场景特征点的平面

外极线:外极平面与图像平面的交线

外极点:两台摄像机中心的连线与图像平面的交点

相机C1,C2如果不是在同一直线上:对两张图片用单应矩阵变换

互相平行

图像匹配

对应点应该是在极线附近,搜索范围适当放宽

判断对应点时的问题:

(1)失真与噪声

(2)镜面反射

(3)透视失真

(4)透视缩放

图像"灰度"匹配:通过利用某种相似性度量,如相关函数、协方差函数、差平方和、差绝对值和等测度极值,判定两幅图像中的对应关系

图像"特征"匹配:通过分别提取两个或多个图像的特征(点、线、面等特征),对特征进行参数描述,然后运用所描述的参数来进行匹配

"双目立体视觉"测距步骤

Step 1-确定摄像机的相对几何位置和有关参数,即摄像机的标定(Calibration)

Step 2-寻找在两幅图像中都便于区分的特征,或用于匹配的 基元

Step 3-把左、右两幅图像中的有关特征进行匹配,即解决特征匹配的方法问题

Step 4-根据视差计算成像物体相对摄像机的距离

"双目立体视觉"应用特点

对相机硬件要求低,成本低

对环境光照非常敏感

不适用于单调缺乏纹理的场景

计算复杂度高,需要逐像素计算匹配

相机基线限制了测量范围:基线越大,测量范围越远

相关推荐
weixin_446260858 分钟前
掌握 Claude Code Hooks:让 AI 变得更聪明!
人工智能
小白|10 分钟前
CANN性能调优实战:从Profiling到极致优化的完整方案
人工智能
哈__10 分钟前
CANN加速图神经网络GNN推理:消息传递与聚合优化
人工智能·深度学习·神经网络
渣渣苏11 分钟前
Langchain实战快速入门
人工智能·python·langchain
七月稻草人12 分钟前
CANN 生态下 ops-nn:AIGC 模型的神经网络计算基石
人工智能·神经网络·aigc·cann
User_芊芊君子13 分钟前
CANN_MetaDef图定义框架全解析为AI模型构建灵活高效的计算图表示
人工智能·深度学习·神经网络
I'mChloe13 分钟前
CANN GE 深度技术剖析:图优化管线、Stream 调度与离线模型生成机制
人工智能
凯子坚持 c15 分钟前
CANN 生态全景:`cann-toolkit` —— 一站式开发套件如何提升 AI 工程效率
人工智能
lili-felicity16 分钟前
CANN流水线并行推理与资源调度优化
开发语言·人工智能
皮卡丘不断更18 分钟前
告别“金鱼记忆”:SwiftBoot v0.1.5 如何给 AI 装上“永久项目大脑”?
人工智能·系统架构·ai编程