飞蛾扑火算法优化+Transformer四模型回归打包(内含MFO-Transformer-LSTM及单独模型)

飞蛾扑火算法优化+Transformer四模型回归打包(内含MFO-Transformer-LSTM及单独模型)

目录

预测效果





基本介绍

1.Matlab实现MFO-Transformer-LSTM多变量回归预测,飞蛾扑火算法优化Transformer-LSTM组合模型;MFO算法(飞蛾扑火优化算法)是一种基于自然启发的智能优化算法,由Seyedali Mirjalili及其团队于2015年提出。其灵感来源于自然界中飞蛾夜间飞行时的导航机制,特别是飞蛾如何通过横向定向的方式沿着螺旋路径向光源(如月亮或火焰)飞行的行为。

2.优化参数为:学习率,隐含层节点,正则化参数,运行环境为Matlab2023b及以上;

3.data为数据集,输入多个特征,输出单个变量,多变量回归预测,main.m为主程序,运行即可,所有文件放在一个文件夹;

4.命令窗口输出R2、MSE、RMSE、MAE、MAPE、MBE等多指标评价。

程序设计

  • 完整源码和数据获取方式:私信博主回复飞蛾扑火算法优化+Transformer四模型回归打包(内含MFO-Transformer-LSTM及单独模型)
clike 复制代码
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行

%%  导入数据
res = xlsread('data.xlsx');

%%  数据分析
num_size = 0.7;                              % 训练集占数据集比例
outdim = 1;                                  % 最后一列为输出
num_samples = size(res, 1);                  % 样本个数
res = res(randperm(num_samples), :);         % 打乱数据集(不希望打乱时,注释该行)
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度


%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);

P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);
%%  数据归一化
[P_train, ps_input] = mapminmax(P_train, 0, 1);
P_test = mapminmax('apply', P_test, ps_input);

[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);


%%  参数设置
options = trainingOptions('adam', ...      % ADAM 梯度下降算法
    'MiniBatchSize', 30, ...               % 批大小,每次训练样本个数30
    'MaxEpochs', 100, ...                  % 最大训练次数 100
    'InitialLearnRate', 1e-2, ...          % 初始学习率为0.01
    'LearnRateSchedule', 'piecewise', ...  % 学习率下降
    'LearnRateDropFactor', 0.5, ...        % 学习率下降因子
    'LearnRateDropPeriod', 50, ...         % 经过100次训练后 学习率为 0.01 * 0.5
    'Shuffle', 'every-epoch', ...          % 每次训练打乱数据集
    'Plots', 'training-progress', ...      % 画出曲线
    'Verbose', false);

参考资料

1\] https://blog.csdn.net/kjm13182345320/category_11003178.html?spm=1001.2014.3001.5482 \[2\] https://blog.csdn.net/kjm13182345320/article/details/117378431 \[3\] https://blog.csdn.net/kjm13182345320/article/details/118253644

相关推荐
Charlie_lll10 分钟前
力扣解题-移动零
后端·算法·leetcode
chaser&upper10 分钟前
矩阵革命:在 AtomGit 解码 CANN ops-nn 如何构建 AIGC 的“线性基石”
程序人生·算法
weixin_4997715519 分钟前
C++中的组合模式
开发语言·c++·算法
禁默40 分钟前
Ops-Transformer深入:CANN生态Transformer专用算子库赋能多模态生成效率跃迁
人工智能·深度学习·transformer·cann
iAkuya1 小时前
(leetcode)力扣100 62N皇后问题 (普通回溯(使用set存储),位运算回溯)
算法·leetcode·职场和发展
近津薪荼1 小时前
dfs专题5——(二叉搜索树中第 K 小的元素)
c++·学习·算法·深度优先
xiaoye-duck1 小时前
吃透 C++ STL list:从基础使用到特性对比,解锁链表容器高效用法
c++·算法·stl
松☆1 小时前
CANN与大模型推理:在边缘端高效运行7B参数语言模型的实践指南
人工智能·算法·语言模型
java干货1 小时前
为什么 “File 10“ 排在 “File 2“ 前面?解决文件名排序的终极算法:自然排序
开发语言·python·算法
皮皮哎哟1 小时前
数据结构:嵌入式常用排序与查找算法精讲
数据结构·算法·排序算法·二分查找·快速排序