Top-p采样:解锁语言模型的创意之门

Top - p采样 是什么:核采样:排序,累计到0.7,随机选择

在自然语言生成和大规模语言模型推理中,Top - p采样(又叫核采样,Nucleus Sampling)是一种基于累积概率的采样策略。

Top - p介绍

Top - p中的p是一个概率阈值,取值范围是0到1。它表示在生成文本时,从概率分布中选择累计概率大于或等于p的最小词集 ,然后从这个词集中随机选择一个词作为输出。

例如,如果p = 0.7,那么模型会从概率分布中选出累计概率达到0.7的那些词,然后从中随机挑选一个作为下一个生成的词。较低的p值会使模型更倾向于选择最可能的词,生成的文本更可预测和重复;较高的p值则会让模型考虑更大的词集,生成的文本更多样和有创意。

原理:排序,累计到0.7,随机选择

  • 概率排序与累积 :模型在生成每个词时,会先对词汇表中的所有词计算一个概率分布(通常通过Softmax函数得到) 。将这些词按照概率从核采样,然后依次累加这些词的概率,直到累加的概率大于或等于设定的p值为止 ,此时所包含的词就构成了用于采样的候选词集
  • 随机采样 :从得到的候选词集中,按照它们各自的概率进行随机采样,选择其中一个词作为生成的结果。
相关推荐
John_ToDebug20 分钟前
大模型提示词(Prompt)终极指南:从原理到实战,让AI输出质量提升300%
人工智能·chatgpt·prompt
居然JuRan20 分钟前
LangGraph从0到1:开启大模型开发新征程
人工智能
双向3329 分钟前
实战测试:多模态AI在文档解析、图表分析中的准确率对比
人工智能
用户51914958484532 分钟前
1989年的模糊测试技术如何在2018年仍发现Linux漏洞
人工智能·aigc
人类发明了工具32 分钟前
【深度学习-基础知识】单机多卡和多机多卡训练
人工智能·深度学习
用户51914958484543 分钟前
检索增强生成(RAG)入门指南:构建知识库与LLM协同系统
人工智能·aigc
CoovallyAIHub44 分钟前
方案 | 动车底部零部件检测实时流水线检测算法改进
深度学习·算法·计算机视觉
CoovallyAIHub1 小时前
方案 | 光伏清洁机器人系统详细技术实施方案
深度学习·算法·计算机视觉
星期天要睡觉1 小时前
机器学习——CountVectorizer将文本集合转换为 基于词频的特征矩阵
人工智能·机器学习·矩阵
lxmyzzs1 小时前
【图像算法 - 14】精准识别路面墙体裂缝:基于YOLO12与OpenCV的实例分割智能检测实战(附完整代码)
人工智能·opencv·算法·计算机视觉·裂缝检测·yolo12